Analisis Varians (Ragam)

Analisis Varians Satu Arah

Misalkan diketahui k > 2 kelompok yang saling bebas dan menyebar normal dengan mean μ_1 , μ_2 , ... μ_k dan variannya sama σ^2 . Kemudian akan diuji hipotesis

Ho: $\mu_1 = \mu_2 = \mu_3 = ... = \mu_k$

sama

H1: sekurang-kurangnya ada dua mean tidak

K sampel acak

	Populasi						
	1	2		i		K	
	X ₁₁	X ₂₁		X _{i1}		X_{k1}	
	X ₁₂	X ₂₂		X_{i2}		X_{k2}	
		•		•			
		•	•			•	
	X _{1n}	X_{2n}		X _{in}		X _{kn}	
Total Nilai tengah	$T_{1.}$ $\bar{x}_{1.}$	$\overline{T}_{2.}$ $\overline{x}_{2.}$		$T_{i.}$ $\overline{x}_{i.}$		$T_{\mathrm{k.}}$ $\overline{x}_{k.}$	T $\bar{x}_{}$

μ adalah mean semua $μ_i$; artinya $μ = \frac{\sum_{i=1}^{k} μ_i}{k}$

$$\mu = \frac{\sum_{i=1}^{k} \mu_i}{k}$$

Dan ragam dari semua pengamatan bila tidak dikempokkan adalah:

$$s^{2} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n} (x_{ij} - \bar{x}_{..})^{2}}{nk - 1}$$

Pembilang dari s² di atas dinamakan dengan jumlah kuadrat total.

Identitas jumlah kuadrat klasifikasi dua arah

$$\sum_{i=1}^{k} \sum_{j=1}^{n} \mathbf{\zeta}_{ij} - \overline{x}_{..}^{2} = n \sum_{i=1}^{k} \mathbf{\zeta}_{i.} - \overline{x}_{..}^{2} + \sum_{i=1}^{k} \sum_{j=1}^{n} \mathbf{\zeta}_{ij} - \overline{x}_{i.}^{2}$$

Atau secara ringkas dapat dituliskan sebagai

JKT = JKK + JKG

JKT: Jumlah Kuadrat Total

JKK : Jumlah Kuadrat Bagi Nilai Tengah

Kolom

JKG: Jumlah Kuadrat Galat

$$JKT = \sum_{i=1}^{k} \sum_{j=1}^{n} x_{ij}^{2} - \frac{T_{..}^{2}}{nk}$$

$$\frac{\sum_{i=1}^{k} T_{i.}^{2}}{n} - \frac{T_{..}^{2}}{nk}$$

$$JKG = JKT - JKK$$

TABEL ANAVA

Sumber Keragaman	Jumlah Kuadrat	Derajat Bebas	Kuadrat Tengah	F hitung
Nilai Tengah Kolom	JKK	k - 1	$s_1^2 = \frac{JKK}{k-1}$	s_1^2
Galat	JKG	k(n - 1)	$s_2^2 = \frac{JKG}{k(n-1)}$	$F = \frac{1}{s_2^2}$
Total	JKT	nk - 1		

Hipotesis nol; Ho, ditolak pada taraf nyata α bila : $F_h > f\alpha[k-1, k(n-1)].$

Jika setiap kelompokknya diambil n yang berbeda $(n_i, i = 1, 2, 3, ..k)$, maka

$$JKT = \sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}^2 - \frac{T^2}{N}$$

$$JKK = \sum_{i=1}^{k} \frac{T_{i}^2}{n_i} - \frac{T^2}{N}$$

$$JKG = JKT - JKK$$

$$Dengan N = \sum_{i=1}^{k} n_i$$

TABEL ANAVA dengan N berbeda

Sumber Keragaman	Jumlah Kuadrat	Derajat Bebas	Kuadrat Tengah	F hitung
Nilai Tengah Kolom	JKK	K - 1	$s_1^2 = \frac{JKK}{k-1}$	$E = s_1^2$
Galat	JKG	N - k	$s_2^2 = \frac{JKG}{N - k}$	$F = \frac{1}{s_2^2}$
Total	JKT	N - 1		

Hipotesis nol; Ho, ditolak pada taraf nyata α bila : $F_h > f\alpha[k-1,\,N-k].$

Contoh

Misalkan diketahui hasil ulangan siswa yang belajar dengan 5 model pembelajaran yang berbeda A, B, C, D, dan E sebagai berikut:

Α	В	С	D	E
5	9	3	2	7
4	7	5	3	6
8	8	2	4	9
6	6	3	1	4
3	9	7	4	7