STRUKTUR ATOM

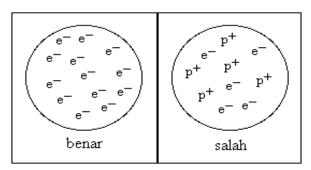
Perkembangan Teori Atom

400 SM filsuf Yunani

Demokritus ⇒ materi terdiri dari beragam jenis partikel kecil

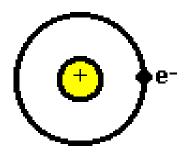
~ 400 SM dan memiliki sifat dari materi yang ditentukan sifat partikel tersebut

Dalton ⇒ atom sebagai bola bulat dengan ukuran sangat kecil yang tidak dapat dipecah lagi menjadi bagian yang lebih kecil.


- atom berasal dari bahasa Yunani "a" artinya tidak dan "tomos" yang artinya dipecah lagi.
- Model ini dianggap sebagai model ilmiah yang pertama kali dikemukakan
 - ⇒ dilandasi oleh fakta hasil eksperimen
 - ⇒ dilandasi hukum kekekalan massa dan hukum perbandingan tetap.

 $J.J. Thomson \Rightarrow$ menemukan elektron, partikel subatom pertama.

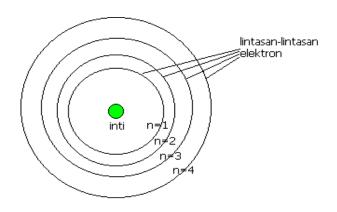
1897


- ⇒ yang pertama meletakkan elektron sebagai bagian dari struktur atom, dan menyempurnakan model atom yang dikemukakan *Dalton*.
- ⇒ menunjukkan partikel bermuatan negatif tersebar dalam lingkungan yang bermuatan positif, tanpa menyebutkan adanya proton

 $Ernest Rutherford \Rightarrow$ Penenembakan partikel alfa pada lempengan

1898 ema

- ⇒ mengusulkan adanya partikel bermuatan positif yang terpusat, sisanya merupakan ruang hampa,
- ⇒ mengusulkan adanya inti atom yang bermuatan positif. Sedangkan elektron yang bermuatan negatif bergerak mengelilingi inti pada lintasannya.

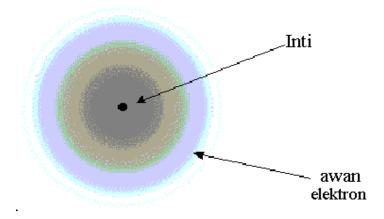

Niels Bohr ⇒ Elektron bergerak mengelilingi inti pada lintasan

berbentuk lingkaran dengan tingkat energi tertentu

- ⇒ Energi elektron berbanding lurus dengan jarak lintasan sehingga lintasan terjauh memiliki energi tertinggi
- ⇒ Elektron dapat berpindah dari satu lintasan ke lintasan lain
- ⇒ Rumusan jari-jari Bohr adalah

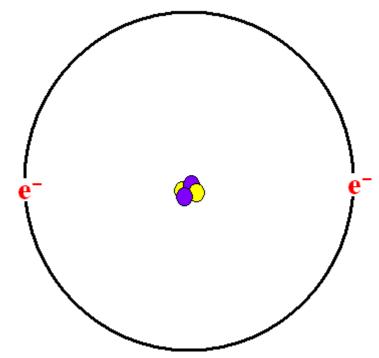
$$\mathbf{r} = \frac{2\pi^2 m_e e^4}{n^2 h^2}$$

n = bilangan kuantum.

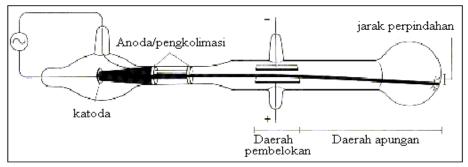

Louis de Broglie ⇒ mengemukakan pemikiran tentang dualisme

1924 gelombang dimana elektron dalam atom selain dapat dipandang sebagai partikel juga gelombang.

Heisenberg ⇒ asas ketidakpastian, yang menyatakan bahwa lintasan seperti yang dikemukakan Bohr tidak mungkin ada, karena yang ada hanyalah kebolehjadian ditemukannya suatu partikel pada ruang tertentu dalam atom, yang disebut sebagai orbital.


Erwin Schrodinger ⇒ merumuskan keboleh jadian merupakan

kuadrat dari persamaan gelombang yang mengambarkan gerakan elektron


Struktur Atom

- Atom adalah bentuk terkecil suatu materi.
- Atom terbagi menjadi bagian inti atom dan kulit atom.
- Inti atom ukurannya sangat kecil dibandingkan ukuran atomnya sendiri
- Atom terdapat partikel-partikel dasar yaitu partikel penyusun suatu atom misalnya elektron, proton, dan netron.

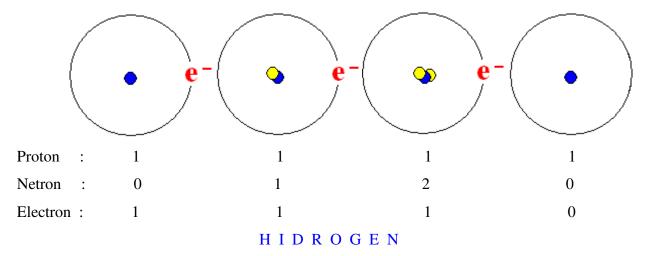
a. Elektron

- Elektron ditemukan oleh *Joseph John Thomson* (1856-1940) pada tahun 1897 dengan percobaan sinar katoda.
- Elektron merupakan partikel dasar bermuatan negatif, muatannya adalah 1,6029 x 10⁻¹⁹ coulomb, dikonversi menjadi –1, karena elektron merupakan muatan listrik terkecil.
- Massa elektron 0,000549 satuan massa atom dan lambangnya : e
- Pembuktian dengan tabung sinar katoda. Dimana sifat sinar katoda menunjukkan sifatsifat sebagai berikut:
 - Sinar ini merambat dalam arah garis lurus dari katoda kecuali kalau dikenai gaya dari luar
 - Bermuatan negatif, ini terbukti karena ditarik oleh lempeng yang bermuatan positif.
 - Jejak sinar ini juga dibengkokkan pada arah yang sama oleh medan magnet seperti halnya jejak partikel bermuatan negatif yang telah diuji sebelumnya.

Gambar 2.6. Skema tabung sinar katoda

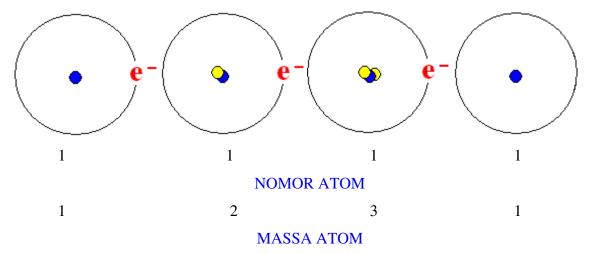
- R.A. Millikan menentukan muatan mutlak elektron dengan uji tetesan minyak.
- Elektron memiliki muatan 1,592 x 10⁻¹⁹ coulomb (kurang tepat karena salah menghitung nilai viskositas udara).

b. Proton


- Ditemukan *Goldstein* saat suatu pendaran (floresensi) tampak dari tabung sinar katoda yang dilubangi, yang menandakan ada sinar positif yang bergerak dalam tabung dan menumbuk pada ujung yang lainnya.
- Proton merupakan partikel dasar bermuatan positif dengan muatan sama dengan muatan elektron tapi berlawanan tanda, yaitu +1.
- Massa proton 1,67492 x10-27kg atau 1,000885 sma (dibulatkan menjadi 1) dan diberi lambang: p.
- Proton terdapat pada inti atom.

c. Netron

- Fakta bahwa adanya selisih jumlah massa proton dan elektron dengan massa atom mendorong penemuan netron
- Ditemukan oleh *James Chadwick* (1891-1974) merupakan partikel dasar yang tidak bermuatan (netral) atau muatannya nol.
- Netron terdapat pada inti atom dan lambangnya : n.
- Massa netron hampir sama dengan massa proton dan besarnya sekitar 1800 kali lebih berat dari massa elektron.


Nomor atom dan massa atom

• Jumlah proton suatu unsur menunjukkan identitas dari unsur tersebut.

• Jumlah proton disebut sebagai nomor atom.

• Untuk atom dengan jumlah proton 1, maka nomor atomnya 1, dan unsur tersebut adalah Hidrogen dengan lambang H. Untuk jumlah proton 2, nomor atom 2, yaitu He, dan seterusnya.

- massa suatu atom merupakan jumlah dari proton dan netron yang terletak dalam inti.
- Lambang atom dengan massa atom dan nomor atom ditulis sebagai:

x X

Dengan X adalah lambang unsur tersebut.

A = massa atom unsur tersebut

Z = nomor atom unsur tersebut

Contoh atom Natrium dituliskan sebagai:

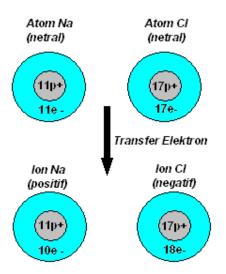
$$^{23}_{11}\mathrm{Na}$$

maka Na memiliki nomor atom 11 dan massa atom 23.

• Untuk suatu atom netral, nomor atom menunjukkan banyaknya elektron, karena netral berarti jumlah proton = jumlah elektron.

Atau

$$\sum \mathbf{p} = \sum \mathbf{e} = \mathbf{Z}$$


Dengan $\sum p$ = jumlah proton dalam atom suatu unsur

 \sum e = jumlah elektron dalam atom suatu unsur

Z = nomor atom unsur tersebut

- Atom adalah netral, mengandung jumlah yang sama dari proton dan elektron.
- ion merupakan partikel bermuatan yang dihasilkan dengan pemindahan elektron dari atom netral
- Muatan pada ion muncul akibat adanya kelebihan atau kekurangan jumlah elektron dibandingkan dengan proton
- ion negatif terbentuk jika menerima elektron.
- Ion positif terbentuk jika melepas elektron
- Ketika ion terbentuk maka jumlah proton tidak berubah.

• Contoh: Na memiliki proton 11 dan elektron 11, jika Na membentuk ion Na⁺, muatan positif pada Na menunjukkan jumlah proton lebih banyak 1 buah dari elektron, atau Na kekurangan elektron 1 buah dari keadaan netralnya. Sebaliknya klor bermuatan negatif 1, maka jumlah elektronnya lebih banyak 1 buah dari jumlah protonnya

Contoh:

Tentukan jumlah proton dan elektron pada:

- a. Al dan Al³⁺ (nomor atom 13)
- b. O dan O²⁻ (nomor atom 8)

Jawab:

a. pada Al nomor atom = 13, proton = 13

elektron = 13

pada Na^{3+} nomor atom = 13, proton = 13

elektron = 13 - 3 = 10 (karena +3 =kurang 3 =elektron)

b. pada O nomor atom = 8, protonn = 8

pada O^{2-} nomor atom = 8, proton = 8

elektron = 8 + 2 = 10(karena -2 = lebih 2 elektron)

- Massa atom diukur dalam satuan massa atom (sma) dengan bilangan yang sesuai dengan
 1/12 dari massa atom ¹²C, yang terdiri dari 6 netron dan 6 proton.
- Massa atom ialah bilangan yang menyatakan jumlah proton dan netron yang terdapat di dalam inti atom suatu unsur.
- Jumlah netron = Massa atom Nomor atom

Atau

$$\sum \mathbf{n} = \mathbf{A} - \mathbf{Z}$$

Dengan $\sum n$ = jumlah netron dalam atom suatu unsur

A = massa atom unsur tersebut

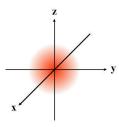
Z = nomor atom unsur tersebut

Contoh soal:

Tentukan lambang unsur untuk atom yang memiliki elektron 7 dan jumlah netron 7

Jawab: a.
$$Z = 7$$
, $N = 7$, maka jumlah elektron = 7
jumlah proton = jumlah elektron = 7
jumlah netron = 7 = 6

maka massa atom (A) = jumlah proton + jumlah netron


$$= 7 + 7 = 14$$

misalkan atom sebagai atom X, maka lambang atom sehingga:

Lambang Atom	Z	N	A	Jumlah elektron
¹⁴ ₇ X	7	7	14	7

Bilangan kuantum

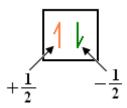
- Pada model *Bohr*, elektron berada pada garis edar tertentu
- Pada model *Schrödinger* kemungkinan untuk tingkat energi elektron yang diberikan.
- Misalnya, elektron pada keadaan dasar dari atom hidrogen memiliki distribusi kebolehjadian yang terlihat seperti berikut :

- intensitas warna yang semakin kuat menunjukkan semakin besar nilai Ψ^2
- ullet semakin besar nilai Ψ^2 maka kemungkinan untuk menemukan elektron pada daerah tersebut lebih besar
- semakin besar nilai Ψ^2 maka kerapatan elektronnya lebih besar
- Model atom *Bohr* menggunakan bilangan kuantum (n) untuk menerangkan garis edar atau *orbit*
- model atom modern menggunakan tiga bilangan kuantum: n, l dan m_l untuk menerangkan *orbital*.

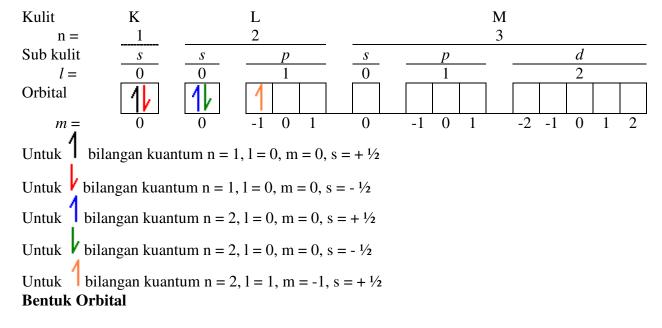
a. Bilangan Kuantum Utama 'n'

- Mempunyai nilai 1, 2, 3 dan seterusnya
- Semakin naik nilai n maka kerapatan elektron semakin jauh dari inti
- Semakin besar nilai n, maka semakin tinggi energi elektron dan ikatan kepada inti semakin longgar

b. Bilangan kuantum Azimut 'l'

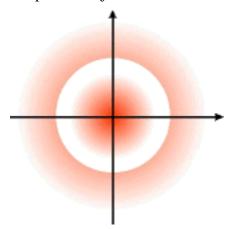

- Memiliki nilai dari 0 sampai dengan (n-1) untuk tiap nilai n, dimana n adalah bilangan kuantum utama
- Dilambangkan dengan huruf ('s'=0, 'p'=1, 'd'=2, 'f'=3)
- Menunjukkan bentuk dari tiap orbital
- Jumlah orbital pada subkulit s, p, d dan f

Sub-kulit	Jumlah Orbital
S	1
p	3
d	5
f	7

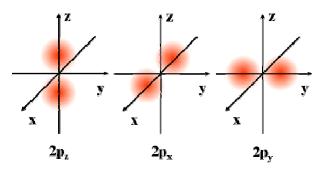

- c. Bilangan kuantum magnetik (ketiga) 'm'
- Memiliki nilai bulat antara 'l' dan '-l', termasuk 0
- Menunjukkan arah orbital dalam ruangnya

Kulit	K		L		\mathbf{N}	1
n =	1		2		3	}
Sub kulit	S	S	p	S	p	\overline{d}
l =	0	0	1	0	1	2
Orbital						
m =	0	0	-1 0 1	0	-1 0 1	-2 -1 0 1 2

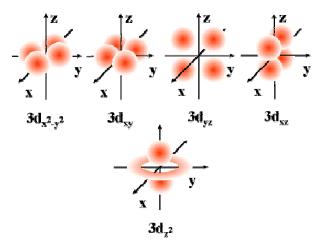
- Gabungan orbital yang memiliki nilai 'n' yang sama disebut kulit elektron.
- Orbital yang memiliki nilai 'n' dan 'l' yang sama terdapat pada *sub-kulit* yang sama.
- d. Bilangan kuantum spin electron
- Uhlenbeck dan Goudsmit, menyatakan bahwa elektron masih memiliki sifat kuantum yang lain, disebut spin electron, atau bilangan kuantum putaran elektron, atau s
- Dalam satu orbital yang sama hanya dapat ditempati maksimal dua elektron
- Electron dalam satu orbital yang sama mempunyai nilai putaran magnetik yang berlawanan
- Bilangan kuantum s dapat memiliki harga $+\frac{1}{2}$ atau $-\frac{1}{2}$. Nilai $+\frac{1}{2}$ untuk putaran dengan arah ke atas dan $-\frac{1}{2}$ untuk ke bawah.



- Prinsip larangan *Pauli* menyatakan bahwa, *tidak ada dua elektron yang terdapat pada* satu atom dapat memiliki empat bilangan kuantum yang sama (n, l, m, dan s)
- Sehingga:


a. Orbital s

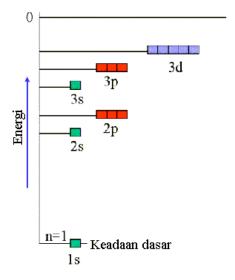
- Bentuk suatu orbital digambarkan dengan permukaan melewati daerah pada probabilitas yang sesuai.
- Sebuah orbital *s* berbentuk bulat seperti ditunjukkan berikut:


b. Orbital p

- Sebuah orbital p memiliki dua bagian terpisah oleh bidang simpul dimana probabilitasnya nol.
- Terdapat tiga orientasi yang mungkin, yaitu yang disebut p_z , p_y dan p_x dan ditunjukkan sebagai berikut:

Gambar Bentuk orbital Px, Py dan Pz

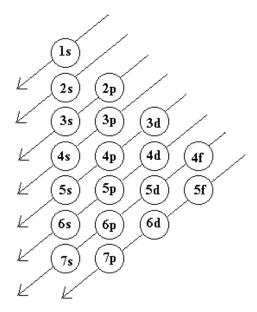
• Sebuah orbital d memiliki lima orientasi. Probabilitasnya nol antara bola-bola. Seperti ditunjukkan berikut:



Gambar Lima bentuk orbital d

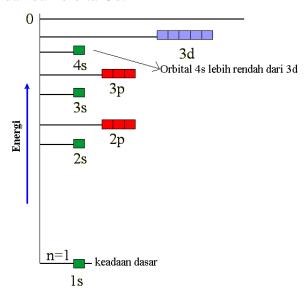
• Mengerti bentuk orbital adalah kunci untuk dapat mengerti pembentukan molekul dari penggabungan beberapa atom.

Orbital pada Atom Berelektron Banyak


- Sebuah atom yang memiliki lebih dari satu elektron disebut atom ber-elektron-banyak.
- Meskipun bentuk orbital elektron untuk atom elektron-banyak adalah sama dengan bentuk untuk atom hidrogen, elektron yang lebih dari satu tersebut mempengaruhi tingkatan energi dari orbitalnya (karena tolakan elektron-elektron).
- Pada atom dengan elektron banyak, bilangan kuantum utama menentukan ukuran, misalnya orbital 1s lebih kecil dari 2s yang lebih kecil dari 3s.
- Energi dari orbital ditentukan oleh bilangan kuantum utama dan bilangan kuantum azimut, sedangkan urutan kenaikan energi ditentukan sebagai berikut:

• Contohnya, orbital 2s memiliki energi yang lebih rendah daripada orbital 2p pada atom elektron-banyak.

Konfigurasi elektron


- Ketika membentuk konfigurasi elektron, penempatan elektron dalam orbital dimulai dengan tingkat energi terendah.
- Untuk hidrogen elektron tunggalnya mengisi pada orbital 1s, yaitu keadaan dengan energi terendah untuk atom hidrogen.
- Untuk atom berelektron banyak pengisian mengikuti aturan *aufbau*, yaitu dimulai dari tingkat energi yang lebih rendah kemudian mengisi tingkat energi berikutnya yaitu 2s, kemudian 2p, dan seterusnya sesuai dengan urutan tingkat energi pada gambar berikut:

 Selain itu perlu diingat, bahwa ada 3 macam orbital p, 5 macam orbital d dan orbital f ada 7 macam, dimana setiap orbital dapat diisi oleh dua elektron, sehingga konfigurasi elektron dengan jumlah elektron pada setiap orbitalnya menjadi:

$$1s^2, 2s^2, \ 2p^6, 3\ s^2, 3p^6, 4s^2, 3d^{10}, 4p^6, 5s^2, 4d^{10}, 5p^6, 6s^2, 4f^{14}, 5d^{10}, 6p^6, 7\ s^2, 5\ f^{14}, 6d^{10}, 7p^6$$

• Tampak bahwa orbital 4s lebih dulu diisi dari orbital 3d, hal itu dikarenakan energi orbital 4s lebih rendah dari orbital 3d.

- Gambar Diagram tingkat energi 4s dan 3d.
- Orbital 1s diisi dua elektron, ini ditunjukkan dengan $1s^2$.
- Jika atom memiliki elektron lebih banyak, elektron berikutnya mengisi pada tingkat energi yang lebih tinggi
- Pada litium mengisi orbital 2s karena unsur ini memiliki 3 elektron. Pengisian orbital digambarkan sebagai $1s^22s^1$
- Penulisan diagram orbital untuk beberapa atom:

Unsur	Total Elektron	Diagram Orbital 1s 2s 2p 3s	Konfigurasi Elektron
H	1		$1s^1$
He	2	11	$1s^{2}$
Li	3	11 1	$1s^2 2s^1$
Ве	4	11/11/	$1s^2 2s^2$
В	5	11 11 1 1	$1s^2 2s^2 2p^1$

• **Dalam pengisian** orbital perlu juga memperhatikan *Aturan Hund*, yang menyatakan "dalam suatu subkulit tertentu, tiap orbital diisi oleh satu elektron terlebih dahulu sebelum ada orbital yang memiliki dua, dan elektron-elektron dalam orbital tersebut spinnya paralel"

Unsur	Total	Diagram Orbital	Konfigurasi
	Elektron	1s $2s$ $2p$ $3s$	Elektron
О	8	11 11 11 1	$1s^2 2s^2 2p^4$
\mathbf{F}	9	11 11 11 11 1	$1s^2 2s^2 2p^5$
Ne	10	11 11 11111	$1s^2 2s^2 2p^6$
Na	11	1111111111	$1s^2 2s^2 2p^6 3s^1$

Gambar Diagram orbital O, F, Ne dan Na

- Pengisian elektron untuk orbital yang terdegenerasi (orbital dengan tingkat energi yang sama)
- Energi minimum akan tercapai ketika jumlah elektron dengan spin yang sama dimaksimumkan (penuh atau setengah penuh).
- Konfigurasi elektron dapat ditulis dengan cara singkat dengan menggantikan urutan dari pengisian orbital oleh lambang atom unsur gas mulia yang memiliki kulit terlengkap paling dekat sebelum unsur tersebut.
 - Konfigurasi elektron Na : $1s^2$, $2s^2$, $2p^6$, $3s^1$ dapat ditulis sebagai [Ne] $3s^1$
 - Konfigurasi elektron Li: 1s², 2s¹ dapat ditulis sebagai [He]2s¹

Elektron valensi

- Electron valensi erupakan electron yang berada pada kulit terluar
- Elektron valensi akan menentukan sifat kimia suatu unsure

No	Lambang	Konfigurasi	Kulit terluar merupakan	Electron
atom		elektron	kulit ke	valensi
3	Li	$1s^2, 2s^1$	2	1
4	Be	$1s^2$, $2s^2$	2	2
5	N	$1s^2, 2s^2, 2p^1$	2	3
6	С	$1s^2, 2s^2, 2p^2$	2	4
7	N	$1s^2, 2s^2, 2p^3$	2	5
8	О	$1s^2, 2s^2, 2p^4$	2	6
9	F	$1s^2, 2s^2, 2p^5$	2	7

10	Ne	$1s^2, 2s^2, 2p^6$	2	8
11	Na	$1s^2, 2s^2, 2p^6, 3s^1$	3	1

TUGAS MANDIRI

- Gambarkan atom Natrium (nomor atom =11) berdasarkan teori atom Dalton, Thomson, Rutherford, Bohr dan modern
- Sebutkan kekurangan teori atom menurut Dalton, Thomson, Rutherford, Bohr dan modern
- 3. Lengkapi tabel berikut:
- 4. Tentukan konfigurasi electron berikut perangkat bilangan kuantun untuk electron terakhir dari :
- a. Neon (Nomor atom 10)
- b. Natrium (Nomor atom 11)
- c. Magnesium (Nomor atom 12)
- d. Aluminium(Nomor atom 13)
- 5. Tentukanlah diagram orbital dan nama unsur yang elektron terakhirnya berakhir pada:
 - a. $3p^5$
 - b. 3d⁵
 - c. 5s¹
 - d. $4f^3$