RANCANGAN KEGIATAN BELAJAR MENGAJAR (SATUAN ACUAN PERKULIAHAN)

Mata Kuliah : Thermodinamika Teknik

Kode MK/SKS : TM 322/2 SKS

Pokok Bahasan dan Sub Pokok Bahasan	Tujuan Instruktusional Umum (TIU) dan Sasaran Belajar (TIK)	Bantuk Pengajaran	Alat Bantu Mengajar	Tugas Latihan	Bahan Bacaan
1	2	3	4	5	6
1. Konsep Dasar Thermodinamika 1.1. Energi - Energy yang tersedia - Energy peralihan	TIU: Mahasiswa dapat memahami konsep dasar termodinamika Sasaran Belajar: Mahasiswa dapat membedakan energy yang tersedia dengan energy peralihan	Kulponsi	OHT Diagram	 Sebutkan perbedaan energy yang tersedia dengan energy peralihan! Sebutkan dan jelaskan bentuk energy yang termasuk energy yang tersedia! Sebutkan dan jelaskan bentuk energy yang termasuk energy peralihan! 	Thermodina mics an engineering approach, yunus A cengel, mc graw Hill. Chapter 1 Hal 2
1.2. Sistem - Sistem terbuka - System tertutup	Sasaran belajar: Mahasiswa dapat menjelaskan perbedaan system terbuka dengan system tertutup	Kulponsi	ОНТ	 Sebutkan pengertian system dalam thermodinamika Sebutkan perbedaan system terbuka dengan tertutup dilengkapi dengan sketsa! 	Chapter 2 Hal 8

1.3. Sifat fisik dari system	Sasaran belajar:	Kulponsi	OHT	Jelaskan pengertian intensive	Chapter 1
Intensive	Mahasiswa dapat menjelaskan			properties dan extensive	Hal 12
properties	perbedaan intensive properties dengan			properties!	
Extensive	extensive properties			2. Jelaskan perbedaan intensive	
properties				properties dengan extensive	
				properties!	
1.4. Proses dan Siklus	Sasaran belajar:	Kulponsi	ОНТ	Jelaskan perbedaan proses	Chapter 1
 Proses reversible 	Mahasiswa dapat menjelaskan	_		reversible dengan proses	Hal 14
 Proses irreversible 	perbedaan proses reversible dengan			irreversible!	
– Siklus	proses irreversible			2. Sebutkan pengertian siklus!	
	2. Mahasiswa dapat menyebutkan			3. Jelaskan perbedaan proses	
	pengertian siklus			dengan siklus!	
1.5. Tekanan (Pressure)	Sasaran belajar:	Kulponsi	ОНТ		Chapter 1
	Mahasiswa dapat menjelaskan pengertian tekanan			Jelaskan pengertian tekanan!	Hal 17
	2. Mahasiswa dapat menurunkan			2. Turunkan rumus tekanan	
	rumus tekanan absolute			absolute!	
	3. Mahasiswa dapat menjelaskan			3. Jelaskan perbedaan tekanan	
	perbedaan tekanan pengukuran dan			pengukuran dan tekanan vacuum!	
	tekanan vacuum				
				T _{1.} Kerjakan soal 1-30, 1-31, 1-32 hal 30	
1.6. Temperatur	Sasaran belajar:	Kulponsi	OHT		Chapter 1
	Mahasiswa dapat menjelaskan	1		1. Jelaskan pengertian temperature!	Hal 17
	pengertian temperature				

	2. Mahasiswa dapat menghitung rumus dengan derajat °C, °F, K			 2. Kerjakan soal 1-43C, 1-44, 144E, 1-45 hal 32 T₂ Kerjakan soal 1-45E, 1-46E & 1-47E hal 33 	
2. Sifat-sifat zat murni	TIU: mahasiswa dapat memahami sifat- sifat zat murni				
2.1. Zat murni	Sasaran belajar: 1. Mahasiswa dapat menjelaskan definisi zat murni 2. Mahasiswa dapat menjelaskan perbedaan padat, cair dan gas	Kulponsi	OHT Diagram	 Jelaskan definisi zat murni! Kerjakan soal 2-1C, 2-2C hal 77 	Chapter 2 Hal 38
2.2. Fase dari zat murni	Sasaran belajar: 1. Mahasiswa dapat menjelaskan perbedaan padat, cair dan gas			 Jelaskan perbedaan antara padat, cair dan gas! Kerjakan soal 2-4C, 2-5C hal 77 	
2.3. Digram sifat-diagram P,V,T	Sasaran belajar: 1. Mahasiswa dapat menjelaskan diagram T-V, P-V, P-T dan P,V,T	Kulponsi	OHT Diagram	1. Kerjakan soal 2-16C, 2-17C hal 78	
2.4. Table sifat termodinamika	Sasaran belajar: 1. Mahasiswa dapat menghitung intalpi	Kulponsi	OHT Diagram	 Kerjakan soal 2-18C hal 78 Kerjakan soal 2-24C hal 78 Kerjakajn soal 2-33 hal 79 	

	Mahasiswa dapat menghitung tekanan dan temperature			T ₃ Kerjakan soal 2-3C, 2-6C, 2-13C, 2-19C, 2-22C dan 2-35 hal 77-81	
2.5. Persamaan keadaan gas ideal – Hukum boyle – Hukum Charles – Hukum Charles-boyle	 Sasaran belajar: Mahasiswa dapat menjelaskan hukum boyle's Mahasiswa dapat menghitung tekanan Mahasiswa dapat menjelaskan hukum Charles Mahasiswa dapat menghitung volume Mahasiswa dapat menjelaskan hukum Charles-boyle 	Kulponsi	OHT Diagram	 Jelaskan hukum boyle dan gambarkan sketnya! Kerjakan soal 2-52 dan 2-53 hal 24 Jelaskan hukum Charles dan gambarkan sketnya! Kerjakan kembali contoh soal 2-10 dengan 50°C hal 65 Jelaskan hukum Charles-boyl, gambarkan sketnya! 	Chapter 2 Hal 63
2.6. Faktor kompresibilitas (z)	Sasaran belajar: 1. Mahasiswa dapat menjelaskan pengertian factor kompresibilitas 2. Mahasiswa dapat menghitung v	Kulponsi	ОНТ	 Jelaskan pengertian factor kompresibilitas! Jelaskan kembali contoh soal 2- 11dengan 75°C hal 67 	
2.7. Persamaan keadaan – van der woals – breatti-bridgmen	Sasaran belajar:1. Mahasiswa dapat menuliskan kembali rumus van der woals2. Mahasiswa dapat menuliskan kembali rumus beatti-bridgmen	Kulponsi	ОНТ	 Tuliskan kembali rumus van der woals! Tuliskan kembali rumus beatti- bridgmen! 	

- benedict-webb-rubin	 Mahasiswa dapat menuliskan kembali rumus benedict-webb-rubin Mahasiswa dapat menghitung P untuk ke-3 persamaan keadaan 			 Tuliskan kembali rumus benedict-webb-rubin Telaan kembali contoh soal 2-13 hal 73, kemudian kerjakan kembali dengan T = 200°K! Kerjakan soal: 2-52E, 2-55E, 2-62, 2-72 hal 84-86 	
3. Hukum pertama termodinamika	TIU: mahasiswa dapat menerapkan hukum pertama thermodinamika				
3.1. Panas (heat)	Sasaran belajar:1. Mahasiswa dapat menjelaskan definisi panas2. Mahasiswa dapat menjelaskan perbedaan panas dengan tenaga dalam	Kulponsi	OHT Diagram	 Jelaskan definisi panas! Jelaskan perbedaan panas dengan tenaga dalam! 	Chapter 3 Hal 91
3.2. Kerja (work)	 Sasaran belajar: Mahasiswa dapat menjelaskan definisi kerja Mahasiswa dapat menjelaskan perbedaan kerja dengan panas Mahasiswa dapat menghitung kerja dari diagram P-V 	Kulponsi	OHT Diagram	 Jelaskan definisi kerja! Jelaskan perbedaan kerja dengan panas! Kerjakan soal 3-1C, 3-3C, 3-5C hal 150 Hitung kerja yang dilakukan suatu proses, dan gambarkan diagram P-V nya! 	

3.3. Keadaan seimbang	Sasaran belajar:	Kulponsi	OHT	
	Mahasiswa dapat menjelaskan		Diagram	Jelaskan keadaan seimbang
	keadaan seimbang dalam suatu proses			dalam suatu proses!
	Mahasiswa dapat menjelaskan			2. Jelaskan perbedaan internal
	perbedaan internal equilibrium			equilibrium!
3.4. Proses	Sasaran belajar:	Kulponsi	OHT	
	Mahasiswa dapat menjelaskan pengertian proses dalam termodinamika		Diagram	Jelaskan pengertian proses dalam termodinamika!
	Mahasiswa dapat menjelaskan perbedaan proses reversible dengan irreversible			Jelaskan perbedaan proses reversible dengan irreversible!
	Mahasiswa dapat menggambarkan proses reversible dan proses irreversible			Gambarkan proses reversible dan proses irreversible!
	Mahasiswa dapat menjelaskan proses-proses yang terjadi pada thermodinamika/siklus			Jelaskan proses-proses yang terjadi pada siklus thermodinamika!
				T ₅ Kerjakan soal no. 3-2C, 3-4C, 3-9C, 3-10C, hal 150 dan 151
3.5. Panas jenis (specific heats)	Sasaran belajar: 1. Mahasiswa dapat menjelaskan pengertian panas jenis	Kulponsi	OHT Diagram	Jelaskan pengertian panas jenis!

	Mahasiswa dapat menjelaskan perbedaan panas jenis pada volume konstan dengan panas jenis pada tekanan konstan			Jelaskan perbedaan panas jenis pada volume konstan dengan panas jenis pada tekanan konstan!
3.6. Internal energy dan inthalpy gas ideal	 Sasaran belajar: Mahasiswa dapat menurunkan rumus internal energy (δu) dari hokum I thermodinamika Mahasiswa dapat menurunkan rumus inthalpy (δh) dari hokum I thermodinamika 	Kulponsi	ОНТ	 Turunkan rumus δu dari hokum I thermodinamika! Turunkan rumus δh dari hokum I thermodinamika! Telaah kembali contoh soal 3-18 hal 134
3.7. Hubungan antara Cp, Cv dan R	 Sasaran belajar: 1. Mahasiswa dapat menurunkan hubungan Cp, Cv dan R dari hokum I thermodinamika 2. Mahasiswa dapat membuktikan Cp = R [k/k-1] 	Kulponsi	OHT Diagram	 Turunkan hubungan Cp, Cv dan R dari hokum I thermodinamika! Buktikan: Cp = R [k / k - 1] Telaah kembali contoh soal 3-19 hal 135

3.8. Perubahan keadaan gas	Sasaran belajar:	Kulponsi	OHT	
ideal	1. Mahasiswa dapat menjelaskan		Diagram	Jelaskan proses isotermis dan
 Proses isotermis 	proses isotermis dan dapat			gambarkan diagram PV,PT &
	menggambarkan diagram PV,PT &			VT!
	VT			
	2. Mahasiswa dapat membuktikan			2. Buktikan dQ = dW pada proses
	panas sama dengan kerja pada			isotermis!
D	proses isotermis	TZ 1	OHE	
 Proses isometric 	Mahasiswa dapat menjelaskan	Kulponsi	OHT	1. Jelaskan yang dimaksud proses
	proses isometric dan dapat		Diagram	isometric dan gambarkan diagram PV, PT & VT!
	menggambarkan diagram PV, PT & VT			Γν, Γι α ν ι !
	2. Mahasiswa dapat membuktikan			2. Buktikan dq = dU pada proses
	panas sama dengan energy dalam			isometric!
	pada proses isometric			isometre.
 Proses isobaris 	Mahasiswa dapat menjelaskan	Kulponsi	OHT	Jelaskan yang dimaksud proses
	proses isobar dan dapat	•	Diagram	isobar dan dapat menggambarkan
	menggambarkan diagram PV, VT		C	diagram PV, VT dan PT!
	dan PT			
	2. Mahasiswa dapat membuktikan			2. Buktikan $dq = c_p (T_2-T_1) = h_2-h_1$
	$dq = c_p (T_2 - T_1) = h_2 - h_1$			pada proses isobaris!
 Proses adiabatic 	 Mahasiswa dapat menjelaskan 	Kulponsi	OHT	Jelaskan yang dimaksud proses
	proses adiabatic dan dapat			adiabatic dan gambarkan diagram
	menggambarkan diagram PV			PV!
	2. Mahasiswa dapat menurunkan			2. Turunkan rumus poisson I, II, dan
	rumus poisson I, II, dan III pada			III!
	proses adiabatic			

- Proses polytropik	 Mahasiswa dapat menjelaskan proses polttropik Mahasiswa dapat membuktikan dq = Cn dT pada proses polytropik 	Kulponsi	ОНТ	 Jelaskan yang dimaksud proses polttropik! Buktikan dq = Cn dT pada proses polytropik! 	
4. Hokum pertama thermodinamika (system terbuka & tertutup)	TIU: Mahasiswa dapat menerapkan hokum thermodinamika I untuk system tertutup dan terbuka				
4.1. Hokum I thermodinamika system tertutup	 Sasaran belajar: Mahasiswa dapat menjelaskan hokum pertama thermodinamika sistem tertutup Mahasiswa dapat membuktikan untuk stasionary closed system q - w = Δv Mahasiswa dapat membuktikan untuk cyclic proses q - w = 0 	Kulponsi	OHT	 Jelaskan hokum pertama thermodinamika sistem tertutup! Buktikan untuk stasionary closed system q - w = Δv Kerjakan soal 4-1C, 4-2C dan 4-3C hal 218-219 Buktikan untuk cyclic proses q - w = 0 Pelajarilah contoh soal 3-15 hal 123 Kerjakan soal 3-66, 3-67E hal 157 	Chapter 3 Hal 91
4.2. Hokum I thermodinamika system terbuka	Sasaran belajar: 1. Mahasiswa dapat menjelaskan hokum pertama thermodinamika system terbuka	Kulponsi	OHT Diagram	Jelaskan hokum pertama thermodinamika system terbuka!	Chapter 4 Hal 177

	 Mahasiswa dapat menurunkan rumus dari prinsip konservasi massa dari control volume (CV) Mahasiswa dapat menyebutkan macam-macam lapisan batas untuk system terbuka Mahasiswa dapat menjelaskan yang dimaksud flow work 			 Turunkan rumus Σ_{mi} - Σ_{me} = Σm_{cv} Pelajari gambar 4-4 & 4-5 hal 179 Mahasiswa dapat menyebutkan macam-macam lapisan batas untuk system terbuka
4.3. Steady flow processes	 Sasaran belajar: Mahasiswa dapat menyebutkan halhal penting yang perlu diketahui dalam "steady flow processes" Mahasiswa dapat menyebutkan system-sistem dalam bidang teknik yang menyangkut "steady-state steady-flow divices" Mahasiswa dapat menghitung massa aliran (in) dan temperature akhir (T₂) pada sebuah diffuser Mahasiswa dapat menghitung kerja keluar yang dilakukan sebuah kompresor Mahasiswa dapat menghitung perbedaan temperature ΔT (T₂-T₁) dari sebuah throttling 	Kulponsi	OHT Diagram chart	 Sebutkan hal-hal penting yang perlu diketahui dalam "steady flow processes"! Pelajari gambar 4-14, 4-15 & 4-16 al 184-185 Sebutkan system-sistem dalam bidang teknik yang menyangkut "steady-state steady-flow divices" Kerjakan soal 4-8C, 4-9C hal 219 Telaah contoh soal 4-1 hal 190 Telaah contoh soal 4-5 hal 193 Telaah contoh soal 4-7 hal 199 Kerjakan soal no. 4-10C hal 219, 4-14, 4-32, 4-41 & 4-47 hal 219, 221 & 223

	6. Mahasiswa dapat menghitung masa aliran (in) dan panas (q) dari sebuah heat exchanger				
4.4. Unsteady flow processes	Sasaran belajar: 1. Mahasiswa dapat menurunkan rumus dari prinsip konservasi energy untuk unsteady flow processes	Kulponsi	OHT Chart	 Turunkan: Q - W + Σ_{θi} - Σ_{θe} = ΔE_{cv} (kj) Pelajari gambar 4-50 halaman 206 Kerjakan soal: 4-75C dan 4-77C hal 228 	Chapter 4 Hal 207
4.5. Uniform flow processes	 Sasaran belajar: Mahasiswa dapat membedakan Unsteady flow processes dengan Uniform flow processes Mahasiswa dapat menghitung temperatir akhir (T₂) dari sebuah tank uap 	Kulponsi	OHT Chart	 Jelakan perbedakan Unsteady flow processes dengan Uniform flow processes! Telaah gambar 4-51 hal 208 Pelajarilah contoh soal 4-10 hal 210 Kerjakan soal 4-78c hal 228, 4-96 hal 232, 4-104 hal 234 & 4-112 hal 236 	

5. Hukum II Thermodinamika	TIU: Mahasiswa dapat menerapkan hokum II thermodinamika				
5.1. Thermal energy reservoir	 Sasaran belajar: Mahasiswa dapat menjelaskan thermal energy reservoir Mahasiswa dapat menjelaskan yang dimaksud source Mahasiswa dapat menjelaskan yang dimaksud sink Mahasiswa dapat menyebutkan contoh-contoh yang termasuk thermal energi reservoir 	Kulponsi	OHT Diagram	 Jelaskan thermal energy reservoir! Jelaskan yang dimaksud source! Jelaskan yang dimaksud sink! Sebutkan contoh-contoh yang termasuk thermal energi reservoir! Kerjakan soal 5-8c, 5-10c, hal 278 	Chapter 5 Hal 239
5.2. Heat engines	 Sasaran belajar: Mahasiswa dapat menjelaskan yang dimaksud heat engines Mahasiswa dapat menyebutkan karakteristik dari heat engines Mahasiswa dapat menjelaskan yang dimaksud dengan efisiensi thermal Mahasiswa dapat menghitung efisiensi thermal heat engines 	Kulponsi	OHT Chart	 Jelaskan yang dimaksud heat engines! Sebutkan karakteristik dari heat engines! Jelaskan yang dimaksud dengan efisiensi thermal! Telaah contoh soal 5-1 hal 247 Kerjakan soal 5-14c hal 278, 5-26 hal 279 	

5.3. Refrigerator dan heat	Sasaran belajar:	Kulponsi	OHT	
pump	 Mahasiswa dapat menjelaskan yang dimaksud refrigerator dan heat pump Mahasiswa dapat menghitung COP_R dari sebuah refrigerator Mahasiswa dapat menghitung Wnet, in dan Q_L 		Chart	 Mahasiswa dapat menjelaskan yang dimaksud refrigerator dan heat pump Telaah contoh soal 5-3 hal 252 Telaah contoh soal 5-4 hal 252 Kerjakan soal 5-41 hal 280, 5-50 hal 282
5.4. Hokum II thermodinamika	Sasaran belajar: 1. Mahasiswa dapat menjelaskan hokum II thermodinamika 2. Mahasiswa dapat menjelaskan perbedaan hokum I dengan hokum II thermodinamika 3. Mahasiswa dapat menjelaskan hokum II thermodinamika menurut hawkins	Kulponsi	OHT Chart	 Jelaskan hokum II thermodinamika! Jelaskan perbedaan hokum I dengan hokum II thermodinamika! Jelaskan hokum II thermodinamika menurut Hawkins! Kerjakan soal 5-9c, 5-11c hal 278, 5-25, 5-28 hal 279, 5-41E hal 281, 5- 52 hal 282

6. Entropy	TIU: Mahasiswa dapat menerapkan entropy pada perhitungan thermodinamika				
6.1. Cara-cara perhitungan entropy	 Sasaran belajar: Mahasiswa dapat menjelaskan apa yang dimaksud dengan entropy Mahasiswa dapat menurunkan rumus entropi dari hokum I thermodinamika Mahasiswa dapat menurunkan rumus entropy untuk:	Kulponsi	OHT Diagram	 Jelaskan apa yang dimaksud dengan entropy! Turunkan rumus: Cv ln T/T1 + R ln v/V2 v1 = Δs Cp ln T/T1 + R ln p/T2 v1 = Δs Some sum sum sum sum sum sum sum sum sum sum	Chapter 6 hal 295

6.2. Proses melingkar	Sasaran belajar:	Kulponsi	OHT		
dalam	 Mahasiswa dapat menggambarkan diagram T-S proses melingkar Mahasiswa dapat menggambarkan diagram T-S siklus carnot Mahasiswa dapat membandingkan carnot siklus dengan sembarang siklus 		Diagram	 Gambarkan diagram T-S proses melingkar! Gambarkan diagram T-S siklus carnot! Bandingkan carnot siklus dengan sembarang siklus, manayang lebih tinggi efisiensinya! 	
6.3. Prinsip pertambahan entropi dalam closed system	Sasaran belajar: 1. Mahasiswa dapat menghitung pertambahan entropi dalam closed system	Kulponsi	OHT Diagram	1. Telaah contoh soal 6-4 hal 305	
6.4. Prinsip pertambahan entropi dalam open system	Sasaran belajar: 1. Mahasiswa mampu menghitung pertambahan entropi dalam open sistem	Kulponsi	OHT Diagram	1. Telaah contoh soal 6-5 hal 314 T ₁₀ kerjakan soal 6-18c hal 362, 6-41 hal 364, 6-45 hal 365	
7. Hubungan-hubungan	TIU: mahasiswa mampu memahami dan				Chapter 11
thermodinamika	menerapkan hubungan-hubungan				Hal 629
umum	thermodinamika umum				

	Sasaran belajar:	Kulponsi	OHT	1. Buktikan:
	Mahasiswa dapat menurunkan	•	Chart	$\left(\frac{\partial p}{\partial v}\right)_T \times \left(\frac{\partial v}{\partial T}\right)_p \times \left(\frac{\partial T}{\partial p}\right)_{n} = -1$
	rumus:		Diagram	$(\partial v)_T \times (\partial T)_p \times (\partial p)_v = 1$
	$\left(\frac{\partial p}{\partial v}\right)_T x \left(\frac{\partial v}{\partial T}\right)_n x \left(\frac{\partial T}{\partial p}\right)_n = -1$			2. Turunkan dari:
	· P · V			$dz = \left(\frac{\partial z}{\partial x}\right) y dx + \left(\frac{\partial z}{\partial y}\right) x dy$
	2. Mahasiswa dapat menurunkan			(OA)
	rumus:			Menjadi:
	$\left(\frac{\partial^2 z}{\partial_x \partial_y}\right) = \left(\frac{\partial^2 z}{\partial_x \partial_y}\right)$			$\left(\frac{\partial^2 z}{\partial_x \partial_y}\right) = \left(\frac{\partial^2 z}{\partial_x \partial_y}\right)$
				3. Pelajari contoh soal 11-2
				hal 632, 11-3 hal 634
7.2. Maxewll relation	Sasaran belajar: 1. Mahasiswa dapat menurunkan	Kulponsi	ОНТ	Turunkan rumus-rumus dari
	rumus:		Chart	Maxwell relation:
	$du = Tds - Pdv \left(\frac{\partial T}{\partial v}\right)_s = -\left(\frac{\partial P}{\partial s}\right)_v$		Diagram	$du = Tds - Pdv \left(\frac{\partial T}{\partial v}\right)_{s} = -\left(\frac{\partial P}{\partial s}\right)_{v}$
	$dh = Tds - Pdv \left(\frac{\partial T}{\partial P}\right)_s = -\left(\frac{\partial v}{\partial s}\right)_P$			$dh = Tds - Pdv \left(\frac{\partial T}{\partial P}\right)_s = -\left(\frac{\partial v}{\partial s}\right)_p$
	$df = -Pdv - SdT \left(\frac{\partial P}{\partial T}\right)_{v} = -\left(\frac{\partial s}{\partial v}\right)_{p}$			$df = -Pdv - SdT \left(\frac{\partial P}{\partial T}\right)_{v} = -\left(\frac{\partial S}{\partial v}\right)_{p}$
	$dg = vdP - SdT \left(\frac{\partial v}{\partial T}\right)_{p} = -\left(\frac{\partial s}{\partial P}\right)_{T}$			$dg = vdP - SdT \left(\frac{\partial v}{\partial T}\right)_{P} = -\left(\frac{\partial s}{\partial P}\right)_{T}$
	2. Mahasiswa dapat menjelaskan yang			2. Jelaskan yang dimaksud dengan
	dimaksud dengan fungsi-fungsi			fungsi-fungsi karakteristik.!
	karakteristik.			3. Pelajari contoh soal 11-4 hal 636

				$T_{11} \text{Kerjakan soal } 11\text{-}2 \text{ hal } 632$ $\text{dengan } T_2 = 350 \text{ K dan } 0,92 \text{ m}^2/\text{kg},$ $11\text{-}4 \text{ hal } 636 \text{ dengan } T_1 = 300 \text{ K dan }$ $\rho = 350 \text{ kpa}$	
8. Siklus Ideal Gas	TIU: mahasiswa dapat memahami dan dapat menerapkan siklus ideal gas Sasaran belajar: 1. Mahasiswa dapat menyebutkan macam-macam siklus gas ideal 2. Mahasiswa dapat menjelaskan asumsi apabila siklus itu dianggap ideal	Kulponsi	OHT Diagram	 Sebutkan macam-macam siklus gas ideal! Jelaskan asumsi apabila siklus itu dianggap ideal! 	Chapter 8 Hal 449
8.1. Siklus Carnot	Sasaran belajar: 1. Mahasiswa dapat menggambarkan diagram PV dan TS siklus carnot 2. Mahasiswa dapat membuktikan $\eta_{th \ carnot} = \frac{T_1 - T_2}{T_1}$	Kulponsi	OHT Diagram Chart	 Gambarkan diagram PV dan TS siklus carnot! Buktikan: η_{th carnot} = T₁ - T₂ T₁ 	
8.2. Siklus Otto	 Sasaran belajar: 1. Mahasiswa dapat menggambarkan diagram PV dan TS siklus Otto 2. Mahasiswa dapat membuktikan η_{th otto} = 1 - T₁/T₂ = 1 - T₄/T₃ 	Kulponsi	OHT Diagram Chart	 Gambarkan diagram PV dan TS siklus Otto! Buktikan: η_{th otto} = 1 - T₁/T₂ = 1 - T₄/T₃ 	

8.3. Siklus diesel	Sasaran belajar:	Kulponsi	OHT		
	Mahasiswa dapat menggambarkan		Diagram	1. Gambarkan diagram PV dan TS	
	diagram PV dan TS siklus Diesel		Chart	siklus Diesel	
	2. Mahasiswa dapat membuktikan			2. Buktikan:	
	$\eta_{\text{th diesel}} = 1 - \frac{1}{k} \times \frac{T_4 - T_1}{T_3 - T_2}$			$\eta_{\text{th diesel}} = 1 - \frac{1}{k} \times \frac{T_4 - T_1}{T_3 - T_2}$	
				3. Pelajarilah contoh soal 8-3 hal	
				466	
9. Campuran dari gas	TIU: mahasiswa dapat memahami dan	Kulponsi	OHT		Chapter 9
ideal dan vapor	dapat menerapkan pada perhitungan		Diagram		Hal 665
	campuran dari gas ideal dan vapor				
9.1. Campuran gas ideal	Sasaran belajar:				
	1. Mahasiswa dapat menyebutkan			1. Sebutkan hokum tekanan dari	
	hokum tekanan dari Dalton			Dalton	
	2. Mahasiswa dapat menyebutkan			2. Mahasiswa dapat menyebutkan	
	hokum volume dari amagat			hokum volume dari amagat	
9.2. Campuran gas	Sasaran belajar:	Kulponsi	ОНТ		
sebenarnya	Mahasiswa dapat menghitung	Kuiponsi	Diagram	Pelajarilah contoh soal 12-5 hal	
5000 main y a	intalpy gas campuran sebenarnya		Diagram	678	
	Mahasiswa dapat menjelaskan			Jelaskan perbedaan campuran gas	
	perbedaan campuran gas ideal			ideal dengan campuran gas	
	dengan campuran gas sebenarnya			sebenarnya	