ANALISIS EFISIENSI VOLUMETRIS PADA MOTOR OTTO DENGAN MENGGUNAKAN VARIABLE VALVE TIMING

Ewo Tarmedi Ridwan Adam M. Noor

ABSTRAK

Tujuan penelitian yaitu untuk mengetahui pengaruh Variable valve terhadap efisiensi

volumetris pada motor otto empat langakah 2000 CC. Penelitian menggunakan engine

Hyundai Beta dengan dua jenis engine CVVT dan konvensional dilakukan diatas engine

dynamometer. Perhitungan dilakukan setelah didapat data hasil pengujian. Berdasarkan

pengujian dan perhitungan dapat disimpulkan bahwa motor yang menggunakan variable

valve (CVVT) mempunyai efisiensi volumetris yang lebih besar sehingga dayanya lebih

besar.

Kata kunci: katup, Variable valve dan daya

ABSTRACT

Research Target that is to know influence Variable valve to volumetric efficiency at four

stoke otto engine 2000 CC. Research uses engine Hyundai Beta with two types engine

CVVT and conventional conducted above engine dynamometer. Calculation is conducted

after got data of testing result. Base testing and calculation can be concluded that motor

that use variable valve (CVVT) have efficiency larger ones volumetris until its power

bigger.

Keywords: Valve, Variable valve and power

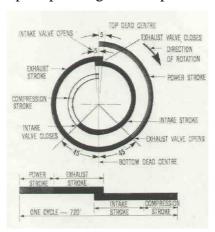
1

PENDAHULUAN

Perkembangan dunia otomotif dewasa ini sangat pesat salah satunya adalah pada motor penggerak kendaraan. Motor penggerak yang digunakan pada kendaraan adalah motor otto dan motor diesel. Motor otto merupakan suatu motor pembakaran dalam yang mengubah energi panas menjadi energi mekanis. Panas yang dihasilkan berawal dari peristiwa pembakaran campuran bahan bakar dan udara yang dikompresikan melalui percikan bunga api pada busi.

Motor otto dilihat dari siklus kerjannya terbagi menjadi dua yaitu motor otto dua langkah dan empat langkah. Saat ini dan untuk masa depan motor otto dua langkah sudah mulai di tinggalkan karena emisi gas buangnya yang besar dan kurang efisien dalam penggunaan bahan bakarnya. Motor otto empat langkah terus dilakukan pengembangan dan penyempurnaan untuk menghasilkan *out put* yang besar dan penggunaan bahan bakar yang efisien serta ramah lingkungan. Siklus pembakaran pada motor otto empat langkah diawali dari langkah isap, langkah kompresi, langkah usaha dan langkah buang. Langkah tersebut berlangsung secara berulang-ulang sehingga dinamakan siklus.

Tuntutan pasar atau konsumen sekarang adalah daya motor yang besar, hemat bahan bakar, ramah lingkungan desainnya kompak dan dengan kapasitas silinder maupun bentuk motor yang kecil. Untuk mencapai tuntutan tersebut yaitu dengan meminimalkan kerugian-kerugian atau memperbesar efisiensi pada motor. Efisiensi pada suatu motor terdiri dari efisiensi volumetris, thermis, pembakaran, dan mekanis. Produsen kendaraan berupaya untuk mempertinggi efisiensi tersebut dengan penambahan komponen, peningkatan kualitas komponen, peningkatan hasil pekerjaan mesin (*Machining process*) dan modifikasi lainnya. Salah satu yang lagi trend saat ini adalah inovasi pada mekanisme katup yaitu pengaturan pembukaan dan penutupan katup yang bervariasi (*variable valve*) sesuai dengan beban dan kecepatan motor. Dewasa ini hampir setiap produsen kendaraan memproduksi motor dengan embel-embel VVT-I, VVT, CVVT*, V –TEC, MIVEC, VANOS dan lain sebagainya. Sebenarnya ada apa dengan *Variable valve*?


Motor otto empat langkah dalam melakukan siklusnya terdiri dari langkah hisap, kompresi, kerja dan buang. Siklus tersebut diatur oleh gerakan piston dan mekanisme katup. Proses pembukaan dan penutupan katup pada siklus ideal terjadi tepat di TMA dan *TMB, sedangkan dalam kenyataanya tidak demikian karena ada beberapa faktor yang menyebabkannya. Pada pembukaan katup hisap dan buang ada yang disebut dengan

-

^{*} Trade mark of Hyundai Corporation

pembukaan awalan dan susulan. Pembukaan awalan artinya katup terbuka lebih awal dibanding pada siklus ideal dan pembukaan susulan katup tertutup lebih lambat dibanding pada siklus ideal.

Salah satu contohnya seperti pada digram katup dibawah ini:

Gambar 1.1 Diagram katup

Katup hisap terbuka 5^0 poros engkol sebelum TMA pada akhir langkah buang (pembukaan awalan katup hisap) dan tertutup 45^0 setelah TMB pada awal langkah kompresi (pembukaan susulan katup hisap). Katup buang terbuka 45^0 sebelum TMB pada langkah kerja (pembukaan awalan katup buang) dan tertutup 5^0 setelah TMA pada awal langkah hisap yang disebut dengan pembukaan susulan katup buang. Bila katup terbuka bersamaan dinamakan *overlapping valve*.

Motor konvensional mempunyai durasi pembukaan katup yang tetap pada setiap tingkat putaran. Menurut penelitian terdahulu, motor yang mempunyai *overlapping* katup yang besar akan cenderung mempunyai torsi dan daya lebih besar yang terjadi pada putaran tinggi, tetapi putaran idle akan sulit di capai pada putaran rendah. Motor ini cocok digunakan untuk *race* atau *sport car*. Sebaliknya bila *overlapping* kecil putaran *idle* akan halus pada putaran lebih rendah dan torsi juga daya maksimal akan terjadi pada putaran rendah sampai menengah. Motor ini cocok untuk digunakan pada kendaraan keluarga atau niaga yang tidak begitu mementingkan kecepatan.

Seiring perkembangan zaman, maka diperlukan motor yang mempunyai keuntungan dari kedua karakter motor diatas. Caranya adalah dengan menggabungkan kedua karakter tersebut dengan cara mengubah durasi pembukaan katup sesuai dengan kebutuhan (*variable*).

Continously Variable valve timing

VVT assembly dipasang pada intake atau exhaust camshaft berfungsi mengontrol

waktu bukaan dan penutupan *intake valve* dan atau *exhaust valve*. Fungsinya adalah untuk memajukan atau memundurkan waktu atau derajat pembukaan dan penutupan *valve*. Sistem ini dalam proses kerjanya dikontrol oleh *engine* ECU (*electronic control unit*). Proses pemajuan dan pemunduranya tergantung putaran dan beban motor yang terdeteksi oleh Ne sensor dan *throtle position sensor*. Sensor tersebut mengirimkan sinyal ke *engine* ECU dan selanjutnya *engine* ECU menugaskan *actuator* (*OCV* = *oil control valve*) untuk memajukan atau memundurkan saat pembukaan dan penutupan katup.

Keuntungan memakai CVVT

Pada buku Hyundai training suport & development menyebutkan:

"keuntungan memakai CVVT

- Konsumsi bahan bakar lebih irit: Berkurangnya daya pemompaan karena adanya peningkatan valve overlapp
- Emisi Berkurang: Berkurangnya gas Nox oleh efek EGR berkat optimalisasi valve overlapp
- Performa meningkat dan momen pada putaran bawah juga meningkat : Peningkatan efisiensi volumetric dan thermodynamic oleh variable valve timing"

Diagram katup VVT

Tabel di bawah ini menunjukan perubahan durasi pembukaan katup CVVT dari minimal sampai maksimal.

Beta Engine

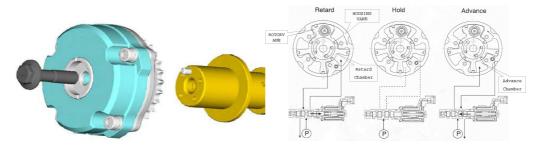
Bota Engine


With Civit Solution and C

Tabel 1. Diagram pembukaan katup konvevsional dan CVVT

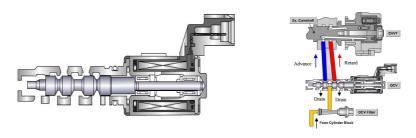
(Hyundai training suport & development, 2006:8)

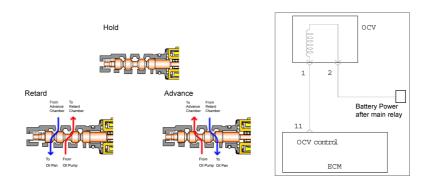
Komponen CVVT


Lay out komponen pada motor

Gambar 1. lay out komponen (Hyundai training suport & development, 2006:5)

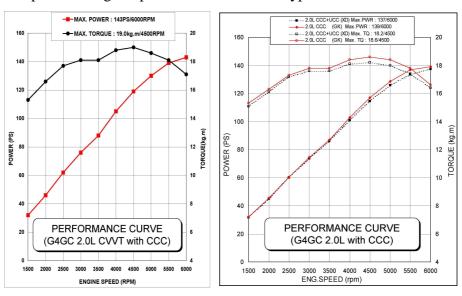
1. CVVT assembly


Adalah sebuah komponen yang terdiri dari housing vane dan rotor vane. Housing vane adalah bagian yang dihubungkan dengan gear timing atau sprocket timing. Rotor vane adalah komponen yang berputar beberapa derajat didalam housing vane. Komponen ini terhubung langsung dengan cam shaft baik intake maupun exhaust. Rotor vane ini yang akan mengubah-ubah saat pembukaan katup dengan bantuan tekanan hidrolik dari minyak pelumas.


Gambar 2. VVT Assembly & cara kerja (Hyundai training suport & development, 2006:9)

2. OCV (oil control valve)

Oil control valve adalah katup yang berfungsi untuk mengatur aliran tekanan hidrolik ke dalam CVVT assembly. OCV terdiri dari komponen *spool* dan *housing spool* yang berfungsi mengarahkan aliran hidrolik atau menutupnya serta solenoid yang berfungsi untuk menggerakan spool maju dan mundur oleh tegangan listrik dari engine ECU


Gambar 3. Oil control valve (Hyundai training suport & development, 2006:10)

Gambar 4. cara kerja OCV & wiring (Hyundai training suport & development, 2006:11)

3. Oil temperature sensor

OTS letaknya di dalam saluran *engine oil*. CVVT diaktifkankan oleh tekanan *engine oil*. Kekentalan oli akan berubah sesuai dengan temperaturnya. Sinyal kontrol yang ada pada OCV dikompensasikan oleh ECM berdasarkan sinyal OTS. OTS diperlukan untuk mengukur temperatur dengan tipe sensor adalah NTC type resistor.

Gambar 6. Grafik putaran vs daya & putaran vs torsi hasil pengujian

Tabel. 2 Putaran Vs Daya Motor

(Sumber: Hyunday motor corporation)

No.	Putaran motor (Rpm)	VVT		Konvensional	
		Daya Motor (Ps)	Momen Puntir (Kgm)	Daya Motor (Ps)	MomenPuntir (Kgm)
1	1500	32.30	15.30	32.00	15.20
2	2000	45.07	16.60	44.50	16.25
3	2500	61.80	17.70	60.60	17.30
4	3000	76.20	18.10	74.70	17.80
5	3500	88.10	18.15	86.50	17.80
6	4000	104.50	18.70	101.70	18.40
7	4500	119,00	19.00	116.30	18.60
8	5000	130.00	18.50	128.10	18.40
9	5500	139.40	18.10	137.50	17.75
10	6000	143.00	17.20	139.00	16.60

Analisis Perhitungan Performance Motor

1. Rumus gas ideal

$$P.v = R.T$$
 (Wiranto A, 1994 : 17)

Keterangan:

 $P = Tekanan Gas, Kg/m^2$

v = Volume Spesifik dari gas, m³/kg

R = Konstanta gas universal, m kg/kg K

= 29,3 m kg/kg K

T = Temperatur absolut, K

Untuk memudahkan dalam penganalisissan motor otto 4 langkah, maka dapat menggunakan siklus ideal volume konstan. Parameter thermodinamika yang perlu diketahui untuk penganalisissan ini adalah;

- ightharpoonup Tekanan udara luar (P₀) = 1030 kg/m²
- **↓** Temperatur udara luar $(T_0) = 27^{\circ}C = 300 \text{ K}$
- 4 Fluida kerja terdiri dari bahan bakar iso oktan normal heptan dan udara

 $\label{eq:continuous_problem} \mbox{Jadi volume spesifik gas adalah } \mbox{ } \mbox{P.v} = \mbox{R.T}$

$$v = \frac{R.T}{P}$$

$$v = \frac{29.3}{10330}$$

$$v = 0.851 \frac{m^3}{kg}$$

Volume spesifik gas adalah 0,851 m³/kg

2. Kapasitas motor

Pada saat langkah isap piston bergerak dari TMA ke TMB terjadi perubahan volume dari kecil menjadi besar, sehingga terjadi kevacuman dan campuran bahan bakar dan udara akan terhisap masuk. Volume fluida yang masuk idealnya adalah sebesar volume langkah atau kapasitas silinder. Basarnya volume langkah motor yang diuji dalam spesifikasi adalah = 2000Cc atau 0,002000 m³

Besarnya volume total adalah

$$Vt = Vl + Vs$$

Dimana:

Vt = Volume total

VI = Volume langkah

Vs = Volume sisa

Maka volume sisa didapat 235,29 cm³

Sehingga diperoleh harga volume silinder, yaitu:

$$Vt = Vl + Vs$$

$$Vt = 2235,29 \text{ Cm}^3$$

$$Vt = 0.00223529 \text{ m}^3$$

3. Jumlah Muatan untuk setiap siklus ideal

$$Bm = \frac{Vl}{v}$$
 $Bm = \frac{0,00223529}{0.851}$ Bm= 0.002626 Kg

4. Jumlah muatan sesungguhnya tiap siklus

 $Bms = Bm \times \eta_v$

Bms = $0.002626 \times \eta_v$

5. Jumlah bahan bakar pada suatu muatan tiap siklus

Jumlah bahan bakar ini tergantung dari kondisi kerja motor tersebut, sehingga jumlah bahan bakar dipengaruhi oleh perbandingan udara dan bahan bakar. Perbandingan udara dan bahan bakar pada setiap kondisi kerja motor dapat dilihat pada tabel berikut:

Tabel 3.2 Campuran bahan bakar untuk berbagai kondisi.

Sumber: New Step Toyota Astra 1995; 3-15

Kondisi kerja motor	Perbandingan udara dan bahan bakar
Saat start temperatur 0°C	Kira-kira 1:1
Saat start temperatur 20°C	Kira-kira 5:1
Saat idling	Kira-kira 11:1
Putaran lambat	12-13:1
Akselerasi	Kira-kira 8:1
Putaran maksimum (beban penuh)	12-13:1
Putaran sedang (ekonomi)	16-18:1

Sebagai contoh perhitungan diambil pada saat putaran idling. FAR (*Fuel air ratio*) pada saat putaran idling yaitu 11 : 1,maka:

$$Bms = \frac{0,002626}{11} x \eta_{v}$$

6. Panas yang dihasilkan dari pembakaran

$$\eta_{pemb}=0.98 \qquad \qquad \text{(Wiranto A, 1994: 36)}$$

$$Npb=10580 \text{ kkal/kg}$$

$$Qm=\frac{0.002626}{11} \text{ x } \eta_{v} \text{ x } \eta_{pemb} \text{ x Npb (Kkal/Siklus)}$$

8. Panas yang dapat dirubah menjadi daya

Tidak semua panas dapat dirubah menjadi daya, karena dalam suatu proses pembakaran motor ada yang dinamakan rendemen thermis, maka perhitungan diatas di kalikan dengan rendemen thermis. Rendemen thermisnya didapat dari :

$$\eta_{th} = 1 - \left(\frac{1}{C}\right)^{k-1}$$

C = Perbandingan kompresi motor (9,5:1)

k = Komponen adiabatis, dapat dicari dari :

Nilai k diperoleh dari persamaan:

$$k = \frac{Cp}{Cv}$$
$$= 1.300$$

Maka

$$\eta_{th} = 1 - \left(\frac{1}{9.5}\right)^{1.300 - 1}$$

$$\eta_{th} = 0.491$$

$$\eta_{th} = 49.1\%$$

Maka panas yang dirubah menjadi daya adalah:

$$Qm = \frac{0,002626}{11} \times \eta_v \times \eta_{pemb} \times Npb \times \eta_{th} \quad (Kkal/Siklus)$$

$$Qm = \frac{0,002626}{11} \times \eta_v \times 0,98 \times 10580 \times 0,491 \times n \times a \times \frac{427}{60 \times 75} = Ni, PS$$

$$Ne = \frac{0,002626}{11} \times \eta_v \times 0,98 \times 10580 \times 0,491 \times n \times a \times \eta_{mek} \times \frac{427}{60 \times 75}, PS$$

Dimana:

$$\eta_{\text{mek}} = 0.80$$

$$32.3 = \frac{0.002626}{11} \times \eta_v \times 0.98 \times 10580 \times 0.491 \times 1200 \times 0.5 \times 0.80 \times \frac{427}{4500} \text{ PS}$$

Maka:

$$\eta_v = \frac{32.3 \text{ x } 4500 \text{ x } 11 \text{ x } 2}{0,002626 \text{ x } 0,98 \text{ x } 0,491 \text{ x } 0,8 \text{ x } 10580 \text{ x } 1200 \text{ x } 427}$$

$$\eta_v = 0.517$$

$$\eta_v = 51.7 \%$$

Dengan perhitungan diatas maka di dapat rendemen volumetris pada setiap tingkat putaran dan beban kerja motor seperti pada tabel di bawah:

VVT Konvensional Putaran Dava Motor **Momen Puntir** Efisiensi Dava Motor MomenPuntir Efisiensi No. motor (Rpm) (Ps) (Kgm) volumetris (Ps) (Kgm) volumetris 1500 32.30 15.30 0.517 32.00 15.20 0.512 45.07 16.60 0.599 44.50 2 2000 16.25 0.583 2500 61.80 17.70 0.702 60.60 17.30 0.688 3 4 3000 76.20 18.10 0.776 74.70 17.80 0.761 3500 88.10 86.50 17.80 18.15 0.769 0.755 5 4000 104.50 101.70 18.40 18.70 0.799 0.777 6 4500 119,00 19.00 116.30 7 0.808 18.60 0.790 8 5000 130.00 18.50 0.738 128.10 18.40 0.727 9 5500 139.40 18.10 0.664 137.50 17.75 0.655 10 6000 143.00 17.20 0.324 139.00 16.60 0.607

Tabel 2. Hasil perhitungan efisiensi volumetris

PEMBAHASAN

Berdasarkan grafik pada gambar 1.7 terlihat adanya perbedaan daya dan torsi antara engine yang menggunakan VVTI dengan konvensional. Parameter engine sama antara VVTI dan konvensional tetapi yang membedakan adalah mekanisme katup variable dan fix. Dari hasil perhitungan dan analisis terjadi perbedaan daya dan torsi disebabkan oleh perbedaan rendemen volumeris diantar keduanya yang disebabkan oleh variable valve tersebut. Pada saat putaran idle katup masuk terbuka tepat di TMA. Pada kondisi deselerasi katup masuk terbuka setelah TMA pada saat langkah hisap. Hal ini yang menyebabkan

engine dapat berputar lebih halus pada saat idle, torsi idle relatif lebih besar dan konsumsi bahan bakar relatif lebih hemat.

Ketika engine berputar tinggi maka katup masuk akan terbuka 29° sebelum TMA. Oleh karenaitu campuran udara dan bahan bakar yang masuk akan lebih banyak sehingga jumlah campuran bahan bakar yang terbakar lebih banyak dan menyebabkan daya yang dihasilkan lebih besar.

KESIMPULAN

Teknologi yang dikembangkan dalam motor pembakaran dalam relatif stagnan, tetapi yang berkembang adalah kontol elektroniknya yang dipadukan dengan mekanis. Variable valve timing adalah salah satu contohnya. Variable valve ini dikontol secara elektro hidlolik. Penggunaan sistem ini dapat mengatur pembukaan awalan katup masuk sesuai dengan kondisi beban engine sehingga dapat memperbesar rendemen volumetris disaat yang tepat sehingga daya dan torsi yang dihasilkan lebih besar dibandingkan engine konvensional.

DAFTAR PUSTAKA

Arends H. Berenschot. *Motor Bensin*. 1992. erlangga. Jakarta

Crouse-anglin. Automotive Mechanic. 1993. McGraw-Hill International Edition

Daryanto. Pesawat Tenaga. 1999. Tarsito. Bandung

Edward F. Obert. *InternalCombustion Engine and air pollution*. 1968. Harper and Row Publisher. New York.

Khovakh. Motor Vehicle Engine. 1976. Moscow. Mirpulisher.

V.L. Maleev. *InternalCombustion Engine*. 1945. Mr. Publisher. Moscow

V.L. Maleev & Bambang Priambodo. *Oprasi dan pemeliharan mesin diesel*. 1995.Erlangga. Jakarta

Wiranto Arismunandar. *Penggerak Mula Motor Bakar Torak*. 1994. ITB. Bandung.

 . New Step 1. 1995. PT. Toyota Astra Motor. Jakarta.
 . New Step 2. 1995. PT. Toyota Astra Motor. Jakarta.
 Engine CVVT System. 2006. Hyundai training suport & development.

Jakarta

ANALISIS EFISIENSI VOLUMETRIS PADA MOTOR OTTO DENGAN MENGGUNAKAN VARIABLE VALVE TIMING

PENELITIAN MANDIRI

OLEH:

Ewo Tarmedi 131 257 195 Ridwan Adam M. Noor 132 314 545

JURUSAN PENDIDIKAN TEKNIK MESIN
FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN
UNIVERSITAS PENDIDIKAN INDONESIA
BANDUNG

2009