
William Stallings

Computer Organization

and Architecture

Chapter 9

Instruction Sets:

Characteristics

and Functions

What is an instruction set?

The complete collection of instructions that are
understood by a CPU

Machine Code

Binary

Usually represented by assembly codes

Elements of an Instruction

Operation code (Op code)

Do this

Source Operand reference

To this

Result Operand reference

Put the answer here

Next Instruction Reference

When you have done that, do this...

Where have all the Operands

gone?

Long time passing….

(If you don’t understand, you’re too young!)

Main memory (or virtual memory or cache)

CPU register

I/O device

Instruction Representation

In machine code each instruction has a unique
bit pattern

For human consumption (well, programmers
anyway) a symbolic representation is used

e.g. ADD, SUB, LOAD

Operands can also be represented in this way

ADD A,B

Instruction Types

Data processing

Data storage (main memory)

Data movement (I/O)

Program flow control

Number of Addresses (a)

3 addresses

Operand 1, Operand 2, Result

a = b + c;

May be a forth - next instruction (usually implicit)

Not common

Needs very long words to hold everything

Number of Addresses (b)

2 addresses

One address doubles as operand and result

a = a + b

Reduces length of instruction

Requires some extra work

Temporary storage to hold some results

Number of Addresses (c)

1 address

Implicit second address

Usually a register (accumulator)

Common on early machines

Number of Addresses (d)

0 (zero) addresses

All addresses implicit

Uses a stack

e.g. push a

 push b

 add

 pop c

c = a + b

How Many Addresses

More addresses

More complex (powerful?) instructions

More registers

Inter-register operations are quicker

Fewer instructions per program

Fewer addresses

Less complex (powerful?) instructions

More instructions per program

Faster fetch/execution of instructions

Design Decisions (1)

Operation repertoire

How many ops?

What can they do?

How complex are they?

Data types

Instruction formats

Length of op code field

Number of addresses

Design Decisions (2)

Registers

Number of CPU registers available

Which operations can be performed on which
registers?

Addressing modes (later…)

RISC v CISC

Types of Operand

Addresses

Numbers

Integer/floating point

Characters

ASCII etc.

Logical Data

Bits or flags

 (Aside: Is there any difference between numbers and characters?
Ask a C programmer!)

Pentium Data Types

8 bit Byte

16 bit word

32 bit double word

64 bit quad word

Addressing is by 8 bit unit

A 32 bit double word is read at addresses
divisible by 4

Specific Data Types

 General - arbitrary binary contents

 Integer - single binary value

 Ordinal - unsigned integer

 Unpacked BCD - One digit per byte

 Packed BCD - 2 BCD digits per byte

 Near Pointer - 32 bit offset within segment

 Bit field

 Byte String

 Floating Point

Pentium Floating Point Data

Types

See Stallings p324

Types of Operation

Data Transfer

Arithmetic

Logical

Conversion

I/O

System Control

Transfer of Control

Data Transfer

Specify

Source

Destination

Amount of data

May be different instructions for different
movements

e.g. IBM 370

Or one instruction and different addresses

e.g. VAX

Arithmetic

Add, Subtract, Multiply, Divide

Signed Integer

Floating point ?

May include

Increment (a++)

Decrement (a--)

Negate (-a)

Logical

Bitwise operations

AND, OR, NOT

Conversion

E.g. Binary to Decimal

Input/Output

May be specific instructions

May be done using data movement instructions
(memory mapped)

May be done by a separate controller (DMA)

Systems Control

Privileged instructions

CPU needs to be in specific state

Ring 0 on 80386+

Kernel mode

For operating systems use

Transfer of Control

Branch

e.g. branch to x if result is zero

Skip

e.g. increment and skip if zero

ISZ Register1

Branch xxxx

ADD A

Subroutine call

c.f. interrupt call

Foreground Reading

Pentium and PowerPC operation types

Stallings p338 et. Seq.

Byte Order

(A portion of chips?)

What order do we read numbers that occupy
more than one byte

e.g. (numbers in hex to make it easy to read)

12345678 can be stored in 4x8bit locations as
follows



Byte Order (example)

Address Value (1) Value(2)

184 12 78

185 34 56

186 56 34

186 78 12

 i.e. read top down or bottom up?

Byte Order Names

The problem is called Endian

The system on the left has the least significant
byte in the lowest address

This is called big-endian

The system on the right has the least
significant byte in the highest address

This is called little-endian

Standard…What Standard?

Pentium (80x86), VAX are little-endian

IBM 370, Moterola 680x0 (Mac), and most RISC
are big-endian

Internet is big-endian

Makes writing Internet programs on PC more
awkward!

WinSock provides htoi and itoh (Host to Internet &
Internet to Host) functions to convert

