
William Stallings

Computer Organization

and Architecture

Chapter 8

Computer Arithmetic

Arithmetic & Logic Unit

Does the calculations

Everything else in the computer is there to
service this unit

Handles integers

May handle floating point (real) numbers

May be separate FPU (maths co-processor)

May be on chip separate FPU (486DX +)

ALU Inputs and Outputs

Integer Representation

Only have 0 & 1 to represent everything

Positive numbers stored in binary

e.g. 41=00101001

No minus sign

No period

Sign-Magnitude

Two’s compliment

Sign-Magnitude

Left most bit is sign bit

0 means positive

1 means negative

+18 = 00010010

 -18 = 10010010

Problems

Need to consider both sign and magnitude in
arithmetic

Two representations of zero (+0 and -0)

Two’s Compliment

+3 = 00000011

+2 = 00000010

+1 = 00000001

+0 = 00000000

 -1 = 11111111

 -2 = 11111110

 -3 = 11111101

Benefits

One representation of zero

Arithmetic works easily (see later)

Negating is fairly easy

3 = 00000011

Boolean complement gives 11111100

Add 1 to LSB 11111101

Geometric Depiction of Twos

Complement Integers

Negation Special Case 1

 0 = 00000000

Bitwise not 11111111

Add 1 to LSB +1

Result 1 00000000

Overflow is ignored, so:

- 0 = 0

Negation Special Case 2

-128 = 10000000

bitwise not 01111111

Add 1 to LSB +1

Result 10000000

So:

-(-128) = -128 X

Monitor MSB (sign bit)

It should change during negation

Range of Numbers

8 bit 2s compliment

+127 = 01111111 = 27 -1

 -128 = 10000000 = -27

16 bit 2s compliment

+32767 = 011111111 11111111 = 215 - 1

 -32768 = 100000000 00000000 = -215

Conversion Between Lengths

Positive number pack with leading zeros

+18 = 00010010

+18 = 00000000 00010010

Negative numbers pack with leading ones

-18 = 10010010

-18 = 11111111 10010010

 i.e. pack with MSB (sign bit)

Addition and Subtraction

Normal binary addition

Monitor sign bit for overflow

Take twos compliment of substahend and add
to minuend

i.e. a - b = a + (-b)

So we only need addition and complement
circuits

Hardware for Addition and

Subtraction

Multiplication

Complex

Work out partial product for each digit

Take care with place value (column)

Add partial products

Multiplication Example

 1011 Multiplicand (11 dec)

 x 1101 Multiplier (13 dec)

 1011 Partial products

 0000 Note: if multiplier bit is 1 copy

 1011 multiplicand (place value)

 1011 otherwise zero

 10001111 Product (143 dec)

 Note: need double length result

Unsigned Binary Multiplication

Execution of Example

Flowchart for Unsigned Binary

Multiplication

Multiplying Negative Numbers

This does not work!

Solution 1

Convert to positive if required

Multiply as above

If signs were different, negate answer

Solution 2

Booth’s algorithm

Booth’s Algorithm

Example of Booth’s Algorithm

Division

More complex than multiplication

Negative numbers are really bad!

Based on long division

001111

Division of Unsigned Binary

Integers

1011

00001101

10010011

1011

001110
1011

1011

100

Quotient

Dividend

Remainder

Partial

Remainders

Divisor

Real Numbers

Numbers with fractions

Could be done in pure binary

1001.1010 = 24 + 20 +2-1 + 2-3 =9.625

Where is the binary point?

Fixed?

Very limited

Moving?

How do you show where it is?

Floating Point

+/- .significand x 2exponent

Misnomer

Point is actually fixed between sign bit and body
of mantissa

Exponent indicates place value (point position)

S
ig

n
 b

it

Biased

Exponent
Significand or Mantissa

Floating Point Examples

Signs for Floating Point

Mantissa is stored in 2s compliment

Exponent is in excess or biased notation

e.g. Excess (bias) 128 means

8 bit exponent field

Pure value range 0-255

Subtract 128 to get correct value

Range -128 to +127

Normalization

FP numbers are usually normalized

 i.e. exponent is adjusted so that leading bit
(MSB) of mantissa is 1

Since it is always 1 there is no need to store it

(c.f. Scientific notation where numbers are
normalized to give a single digit before the
decimal point

e.g. 3.123 x 103)

FP Ranges

For a 32 bit number

8 bit exponent

+/- 2256 1.5 x 1077

Accuracy

The effect of changing lsb of mantissa

23 bit mantissa 2-23 1.2 x 10-7

About 6 decimal places

Expressible Numbers

IEEE 754

Standard for floating point storage

32 and 64 bit standards

8 and 11 bit exponent respectively

Extended formats (both mantissa and exponent)
for intermediate results

FP Arithmetic +/-

Check for zeros

Align significands (adjusting exponents)

Add or subtract significands

Normalize result

FP Arithmetic x/

Check for zero

Add/subtract exponents

Multiply/divide significands (watch sign)

Normalize

Round

All intermediate results should be in double
length storage

Floating

Point

Multiplication

Floating

Point

Division

Required Reading

Stallings Chapter 8

IEEE 754 on IEEE Web site

