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Computer Arithmetic



Arithmetic & Logic Unit

Does the calculations

Everything else in the computer is there to 
service this unit

Handles integers

May handle floating point (real) numbers

May be separate FPU (maths co-processor)

May be on chip separate FPU (486DX +)



ALU Inputs and Outputs



Integer Representation

Only have 0 & 1 to represent everything

Positive numbers stored in binary

e.g. 41=00101001

No minus sign

No period

Sign-Magnitude

Two’s compliment



Sign-Magnitude

Left most bit is sign bit

0 means positive

1 means negative

+18 = 00010010

 -18 = 10010010

Problems

Need to consider both sign and magnitude in 
arithmetic

Two representations of zero (+0 and -0)



Two’s Compliment

+3 = 00000011

+2 = 00000010

+1 = 00000001

+0 = 00000000

 -1 = 11111111

 -2 = 11111110

 -3 = 11111101



Benefits

One representation of zero

Arithmetic works easily (see later)

Negating is fairly easy

3 = 00000011

Boolean complement gives 11111100

Add 1 to LSB 11111101



Geometric Depiction of Twos 

Complement Integers



Negation Special Case 1

 0 =                00000000

Bitwise not       11111111

Add 1 to LSB              +1

Result           1 00000000

Overflow is ignored, so:

- 0 = 0 



Negation Special Case 2

-128 =           10000000

bitwise not     01111111

Add 1 to LSB            +1

Result            10000000

So:

-(-128) = -128   X

Monitor MSB (sign bit)

It should change during negation



Range of Numbers

8 bit 2s compliment

+127 = 01111111 = 27 -1

 -128 = 10000000 = -27

16 bit 2s compliment

+32767 = 011111111 11111111 = 215 - 1

 -32768 = 100000000 00000000 = -215



Conversion Between Lengths

Positive number pack with leading zeros

+18 =                00010010

+18 = 00000000 00010010

Negative numbers pack with leading ones

-18 =                10010010

-18 = 11111111 10010010

 i.e. pack with MSB (sign bit)



Addition and Subtraction

Normal binary addition

Monitor sign bit for overflow

Take twos compliment of substahend and add 
to minuend

i.e. a - b = a + (-b)

So we only need addition and complement 
circuits



Hardware for Addition and 

Subtraction



Multiplication

Complex

Work out partial product for each digit

Take care with place value (column)

Add partial products



Multiplication Example

 1011   Multiplicand (11 dec)

 x 1101   Multiplier     (13 dec)

 1011   Partial products

 0000     Note: if multiplier bit is 1 copy

 1011 multiplicand (place value)

 1011 otherwise zero

 10001111   Product (143 dec)

 Note: need double length result



Unsigned Binary Multiplication



Execution of Example



Flowchart for Unsigned Binary 

Multiplication



Multiplying Negative Numbers

This does not work!

Solution 1

Convert to positive if required

Multiply as above

If signs were different, negate answer

Solution 2

Booth’s algorithm



Booth’s Algorithm



Example of Booth’s Algorithm



Division

More complex than multiplication

Negative numbers are really bad!

Based on long division
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Real Numbers

Numbers with fractions

Could be done in pure binary

1001.1010 = 24 + 20 +2-1 + 2-3 =9.625

Where is the binary point?

Fixed?

Very limited

Moving?

How do you show where it is?



Floating Point

+/- .significand x 2exponent

Misnomer

Point is actually fixed between sign bit and body 
of mantissa

Exponent indicates place value (point position)
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Floating Point Examples



Signs for Floating Point

Mantissa is stored in 2s compliment

Exponent is in excess or biased notation

e.g. Excess (bias) 128 means

8 bit exponent field

Pure value range 0-255

Subtract 128 to get correct value

Range -128 to +127



Normalization

FP numbers are usually normalized

 i.e. exponent is adjusted so that leading bit 
(MSB) of mantissa is 1

Since it is always 1 there is no need to store it

(c.f. Scientific notation where numbers are 
normalized to give a single digit before the 
decimal point

e.g. 3.123 x 103)



FP Ranges

For a 32 bit number

8 bit exponent 

+/- 2256 1.5 x 1077

Accuracy

The effect of changing lsb of mantissa

23 bit mantissa 2-23 1.2 x 10-7

About 6 decimal places



Expressible Numbers



IEEE 754

Standard for floating point storage

32 and 64 bit standards

8 and 11 bit exponent respectively

Extended formats (both mantissa and exponent) 
for intermediate results



FP Arithmetic +/-

Check for zeros

Align significands (adjusting exponents)

Add or subtract significands

Normalize result



FP Arithmetic x/

Check for zero

Add/subtract exponents 

Multiply/divide significands (watch sign)

Normalize

Round

All intermediate results should be in double 
length storage
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Required Reading

Stallings Chapter 8

IEEE 754  on IEEE Web site


