
William Stallings

Computer Organization

and Architecture

Chapter 13

Instruction Level Parallelism

and Superscalar Processors

What is Superscalar?

Common instructions (arithmetic, load/store,
conditional branch) can be initiated and
executed independently

Equally applicable to RISC & CISC

In practice usually RISC

Why Superscalar?

Most operations are on scalar quantities (see
RISC notes)

Improve these operations to get an overall
improvement

General Superscalar

Organization

Superpipelined

Many pipeline stages need less than half a clock
cycle

Double internal clock speed gets two tasks per
external clock cycle

Superscalar allows parallel fetch execute

Superscalar v

Superpipeline

Limitations

Instruction level parallelism

Compiler based optimisation

Hardware techniques

Limited by

True data dependency

Procedural dependency

Resource conflicts

Output dependency

Antidependency

True Data Dependency

ADD r1, r2 (r1 := r1+r2;)

MOVE r3,r1 (r3 := r1;)

Can fetch and decode second instruction in
parallel with first

Can NOT execute second instruction until first is
finished

Procedural Dependency

Can not execute instructions after a branch in
parallel with instructions before a branch

Also, if instruction length is not fixed,
instructions have to be decoded to find out how
many fetches are needed

This prevents simultaneous fetches

Resource Conflict

Two or more instructions requiring access to the
same resource at the same time

e.g. two arithmetic instructions

Can duplicate resources

e.g. have two arithmetic units

Dependencies

Design Issues

Instruction level parallelism

Instructions in a sequence are independent

Execution can be overlapped

Governed by data and procedural dependency

Machine Parallelism

Ability to take advantage of instruction level
parallelism

Governed by number of parallel pipelines

Instruction Issue Policy

Order in which instructions are fetched

Order in which instructions are executed

Order in which instructions change registers and
memory

In-Order Issue

In-Order Completion

Issue instructions in the order they occur

Not very efficient

May fetch >1 instruction

Instructions must stall if necessary

In-Order Issue In-Order

Completion (Diagram)

In-Order Issue

Out-of-Order Completion

Output dependency

R3:= R3 + R5; (I1)

R4:= R3 + 1; (I2)

R3:= R5 + 1; (I3)

I2 depends on result of I1 - data dependency

If I3 completes before I1, the result from I1 will be
wrong - output (read-write) dependency

In-Order Issue Out-of-Order

Completion (Diagram)

Out-of-Order Issue

Out-of-Order Completion

Decouple decode pipeline from execution
pipeline

Can continue to fetch and decode until this
pipeline is full

When a functional unit becomes available an
instruction can be executed

Since instructions have been decoded, processor
can look ahead

Out-of-Order Issue Out-of-Order

Completion (Diagram)

Antidependency

Write-write dependency

R3:=R3 + R5; (I1)

R4:=R3 + 1; (I2)

R3:=R5 + 1; (I3)

R7:=R3 + R4; (I4)

I3 can not complete before I2 starts as I2 needs a
value in R3 and I3 changes R3

Register Renaming

Output and antidependencies occur because
register contents may not reflect the correct
ordering from the program

May result in a pipeline stall

Registers allocated dynamically

i.e. registers are not specifically named

Register Renaming example

R3b:=R3a + R5a (I1)

R4b:=R3b + 1 (I2)

R3c:=R5a + 1 (I3)

R7b:=R3c + R4b (I4)

Without subscript refers to logical register in
instruction

With subscript is hardware register allocated

Note R3a R3b R3c

Machine Parallelism

Duplication of Resources

Out of order issue

Renaming

Not worth duplication functions without register
renaming

Need instruction window large enough (more
than 8)

Branch Prediction

80486 fetches both next sequential instruction
after branch and branch target instruction

Gives two cycle delay if branch taken

RISC - Delayed Branch

Calculate result of branch before unusable
instructions pre-fetched

Always execute single instruction immediately
following branch

Keeps pipeline full while fetching new instruction
stream

Not as good for superscalar

Multiple instructions need to execute in delay slot

Instruction dependence problems

Revert to branch prediction

Superscalar Execution

Superscalar Implementation

Simultaneously fetch multiple instructions

Logic to determine true dependencies involving
register values

Mechanisms to communicate these values

Mechanisms to initiate multiple instructions in
parallel

Resources for parallel execution of multiple
instructions

Mechanisms for committing process state in
correct order

Required Reading

Stallings chapter 13

Manufacturers web sites

IMPACT web site

research on predicated execution

