William Stallings
Computer Organization
and Architecture

Chapter 13
Instruction Level Parallelism
and Superscalar Processors

What is Superscalar?

& Common instructions (arithmetic, load/store,
conditional branch) can be initiated and
executed independently

& Equally applicable to RISC & CISC
& In practice usually RISC

Why Superscalar?

&8 Most operations are on scalar quantities (see
RISC notes)

&8 Improve these operations to get an overall
improvement

General Superscalar
Organization

Pipelined
functional
units

Integer Register File

Floating Point Register File

]
A
]
I

| 77,
| s,
G,

7\

el
AT,
o]

aaaaa

RN
NN
.
NS

Memory

RN
N
RN
RS

Superpipelined

& Many pipeline stages need less than half a clock
cycle

#8 Double internal clock speed gets two tasks per
external clock cycle

& Superscalar allows parallel fetch execute

Execute

Key:

RS
Sup
S

Ifetch | Decode W Write
1
1
1
Base Machine
| 1
1
1
| 1
| 1
| 1
| 1
| 1
1 1
| 1
| 1
| 1
erpipel
1 1
| 1
| 1
| 1
| 1
1 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
Uperpsc:
|
|
|

I AR
T HHH

Time in base eveles

Superscalar v

Superpipeline

SIIOT] IS 3AISS32IN K

Limitations

> Instruction level parallelism
> Compiler based optimisation
> Hardware techniques

> Limited by

[~ True data dependency
[~IProcedural dependency
[~IResource conflicts

[~lOutput dependency
[~lAntidependency

Qo Qo Qo Qo

True Data Dependency

$BADD rl, r2 (r1 :=rl1+r2;)
FMOVE r3,r1 (r3 :=r1;)

38 Can fetch and decode second instruction in
parallel with first

g Can NOT execute second instruction until first is
finished

Procedural Dependency

3£ Can not execute instructions after a branch in
parallel with instructions before a branch

&8 Also, if instruction length is not fixed,
instructions have to be decoded to find out how
many fetches are needed

&8 This prevents simultaneous fetches

Resource Conflict

& Two or more instructions requiring access to the
same resource at the same time
[Ale.g. two arithmetic instructions

& Can duplicate resources
[~le.g. have two arithmetic units

Dependencies

i0

i)
il/branch

Key: Execute
Ifeteh | Decode Wrile
I I I I
I I I I
I I I I I
I I ' I I
I 1 No Dependency| I
I I I I I
I I I | I I 1 [1
I I 1 I 1 1 I [
I I I I I 1 I I
I I I I I
i I I AL
Data Dependency !
M p (i1 vses data computer by 1]
I I [] I I 1 I I
I I I I I I 1 [1
I I I | I I 1 [1
I I I 1 I 1 1 I [
I I I I I
I I ' . I
I i Procedural Dependency
I I
I I I [
: : e : !
I ! et I I
1 [: - I
! ! ! R !
I
I | I W I
I I I I
I I I | I I 1 [1
I I I | I I 1 [1
I I I I I I 1 I I
I I I I I
I I I I I
: Resource Conflict :
M Ll and i1 use the same |
[T el I
| | | | | , functional unit) | ,
] 1 2 3 4 5 [} 7 8 9

Time in base cycles

Design Issues

&8 Instruction level parallelism

[AlInstructions in a sequence are independent
[~lExecution can be overlapped

[~lGoverned by data and procedural dependency

3 Machine Parallelism

[~1ADbility to take advantage of instruction level
parallelism

[~AlGoverned by number of parallel pipelines

Instruction Issue Policy

D

J

D

J

D

Qo QoD QoD

J

Order in w
Order in w

Order in w
memory

NIC
NIC

NIC

N instructions are fetched
N instructions are executed

N instructions change registers and

In-Order Issue
In-Order Completion

> Issue instructions in the order they occur
>Not very efficient

> May fetch >1 instruction

> Instructions must stall if necessary

(aWs) Qo QoD QoD

In-Order Issue In-Order

Completion (Diagram)

Write

11

12

Decode
11 12
13 14
13 14

14
15 16

16

Execute
11 12
11
13
14
15
It

13

14

15

16

Cvele

L 4= & b=

e A |

In-Order Issue
Out-of-Order Completion

&8 Output dependency
[AIR3:= R3 + R5; (I1)
AIR4:=R3 + 1; (I2)
AIR3:=R5 + 1; (I3)
[~II2 depends on result of I1 - data dependency

[AIIf I3 completes before 11, the result from I1 will be
wrong - output (read-write) dependency

In-Order Issue Out-of-Order
Completion (Diagram)

Write

12

Decode
11 12
13 14
14
15 16
16

11

13

14

Execute
11 12
11 13
14
15
16

15

16

Cvele

b

h &= W

Out-of-Order Issue
Out-of-Order Completion

#6 Decouple decode pipeline from execution
pipeline

38 Can continue to fetch and decode until this
pipeline is full

FEWhen a functional unit becomes available an

instruction can be executed

&8 Since instructions have been decoded, processor
can look ahead

Out-of-Order Issue Out-of-Order
Completion (Diagram)

Decode Window Execute YWrite

nz) T

13 | 14 102 11 | 12

1= | 16 N EN T 11 13 12
D 1415.06 16 | 14 11| 13
R 15 14 | 16
N ! 15

Cvele

[B

o

Antidependency

& Write-write dependency
AIR3:=R3 + R5; (I1)
~R4:=R3 + 1; (I2)
AIR3:=R5 + 1; (I3)
AR7:=R3 + R4; (14)

[AII3 can not complete before 12 starts as 12 needs a
value in R3 and I3 changes R3

Register Renaming

&8 Output and antidependencies occur because
register contents may not reflect the correct
ordering from the program

> May result in a pipeline stall

> Registers allocated dynamically
[Ali.e. registers are not specifically named

Qo Qo

Register Renaming example

#R3b:=R3a + R5a (I1)
F$R4b:=R3b + 1 (I12)
F#R3c:=R5a + 1 (I3)
#R7b:=R3c + R4b (14)

& Without subscript refers to logical register in
Instruction

& With subscript is hardware register allocated
&8 Note R3a R3b R3c

Machine Parallelism

> Duplication of Resources
> Out of order issue
> Renaming

> Not worth duplication functions without register
renaming

& Need instruction window large enough (more
than 8)

(aWs) Qo QoD QoD

Branch Prediction

& 80486 fetches both next sequential instruction
after branch and branch target instruction

&8 Gives two cycle delay if branch taken

RISC - Delayed Branch

3£ Calculate result of branch before unusable
instructions pre-fetched

36 Always execute single instruction immediately
following branch

&8 Keeps pipeline full while fetching new instruction
stream

&8 Not as good for superscalar
[AIMultiple instructions need to execute in delay slot
[(~lInstruction dependence problems

&8 Revert to branch prediction

Superscalar Execution

instruction instruction
instruction fetch dispatch issue
_ and branch 1 instruction instruction
static prediction ' execution reorder and
program commit

window of
execution

Superscalar Implementation

> Simultaneously fetch multiple instructions

> Logic to determine true dependencies involving
register values

> Mechanisms to communicate these values

> Mechanisms to initiate multiple instructions in
parallel

&8 Resources for parallel execution of multiple
Instructions

& Mechanisms for committing process state in
correct order

QoD QoD

Qo Qo

Required Reading

s Stallings chapter 13
® Manufacturers web sites

&8 IMPACT web site
[~lresearch on predicated execution

QoD QoD

