
William Stallings 

Computer Organization 

and Architecture

Chapter 12

Reduced Instruction

Set Computers



Major Advances in 

Computers(1)

The family concept

IBM System/360  1964

DEC PDP-8

Separates architecture from implementation

Microporgrammed control unit

Idea by Wilkes 1951

Produced by IBM S/360 1964

Cache memory

IBM S/360 model 85  1969



Major Advances in 

Computers(2)

Solid State RAM

(See memory notes)

Microprocessors

Intel 4004  1971

Pipelining

Introduces parallelism into fetch execute cycle

Multiple processors



The Next Step - RISC

Reduced Instruction Set Computer

Key features

Large number of general purpose registers

or use of compiler technology to optimize register 
use

Limited and simple instruction set

Emphasis on optimising the instruction pipeline



Comparison of processors

 CISC RISC Superscalar

 IBM             DEC VAX  Intel                       Motorola  MIPS                        IBM          Intel

 370/168      11/780     486                         88000     R4000                       RS/6000    80960

 1973           1978        1989                       1988       1991                        1990          1989

 No. of instruction

 208              303        235                          51          94                           184             62

 Instruction size (octets)

 2-6               2-57       1-11                         4           32                           4                4 or 8

 Addressing modes

 4                  22          11                            3            1                           2               11

 GP Registers

 16                16           8                            32          32                          32             23-256

 Control memory (k bytes) (microprogramming)

 420             480        246                             0            0                          0               0



Driving force for CISC

Software costs far exceed hardware costs

Increasingly complex high level languages

Semantic gap

Leads to:

Large instruction sets

More addressing modes

Hardware implementations of HLL statements

e.g. CASE (switch) on VAX



Intention of CISC

Ease compiler writing

Improve execution efficiency

Complex operations in microcode

Support more complex HLLs



Execution Characteristics

Operations performed

Operands used

Execution sequencing

Studies have been done based on programs 
written in HLLs

Dynamic studies are measured during the 
execution of the program



Operations

Assignments

Movement of data

Conditional statements (IF, LOOP)

Sequence control

Procedure call-return is very time consuming

Some HLL instruction lead to many machine 
code operations



Relative Dynamic Frequency

Dynamic Machine Instruction Memory Reference

Occurrence (Weighted) (Weighted)

Pascal C Pascal C Pascal C

Assign 45 38 13 13 14 15

Loop 5 3 42 32 33 26

Call 15 12 31 33 44 45

If 29 43 11 21 7 13

GoTo - 3 - - - -

Other 6 1 3 1 2 1



Operands

Mainly local scalar variables

Optimisation should concentrate on accessing 
local variables

Pascal C Average

Integer constant 16 23 20

Scalar variable 58 53 55

Array/structure 26 24 25



Procedure Calls

Very time consuming

Depends on number of parameters passed

Depends on level of nesting

Most programs do not do a lot of calls followed 
by lots of returns

Most variables are local

(c.f. locality of reference)



Implications

Best support is given by optimising most used  
and most time consuming features

Large number of registers

Operand referencing

Careful design of pipelines

Branch prediction etc.

Simplified (reduced) instruction set



Large Register File

Software solution

Require compiler to allocate registers

Allocate based on most used variables in a given 
time

Requires sophisticated program analysis

Hardware solution

Have more registers

Thus more variables will be in registers



Registers for Local Variables

Store local scalar variables in registers

Reduces memory access

Every procedure (function) call changes locality

Parameters must be passed

Results must be returned

Variables from calling programs must be 
restored



Register Windows

Only few parameters

Limited range of depth of call

Use multiple small sets of registers

Calls switch to a different set of registers

Returns switch back to a previously used set of 
registers



Register Windows cont.

Three areas within a register set

Parameter registers

Local registers

Temporary registers

Temporary registers from one set overlap parameter 
registers from the next

This allows parameter passing without moving data



Overlapping Register Windows



Circular Buffer diagram



Operation of Circular Buffer

When a call is made, a current window pointer 
is moved to show the currently active register 
window

If all windows are in use, an interrupt is 
generated and the oldest window (the one 
furthest back in the call nesting) is saved to 
memory

A saved window pointer indicates where the 
next saved windows should restore to



Global Variables

Allocated by the compiler to memory

Inefficient for frequently accessed variables

Have a set of registers for global variables



Registers v Cache

 Large Register File Cache

 All local scalars Recently used local scalars

 Individual variables Blocks of memory

 Compiler assigned global variables Recently used global variables

 Save/restore based on procedure Save/restore based on  
nesting caching algorithm 

 Register addressing Memory addressing



Referencing a Scalar -

Window Based Register File



Referencing a Scalar - Cache



Compiler Based Register 

Optimization

 Assume small number of registers (16-32)

 Optimizing use is up to compiler

 HLL programs have no explicit references to registers

usually - think about C - register int

 Assign symbolic or virtual register to each candidate 
variable 

 Map (unlimited) symbolic registers to real registers

 Symbolic registers that do not overlap can share real 
registers

 If you run out of real registers some variables use 
memory



Graph Coloring

 Given a graph of nodes and edges

 Assign a color to each node

 Adjacent nodes have different colors

 Use minimum number of colors

 Nodes are symbolic registers

 Two registers that are live in the same program 
fragment are joined by an edge

 Try to color the graph with n colors, where n is the 
number of real registers

 Nodes that can not be colored are placed in memory



Graph Coloring Approach



Why CISC (1)?

Compiler simplification?

Disputed…

Complex machine instructions harder to exploit

Optimization more difficult

Smaller programs?

Program takes up less memory but…

Memory is now cheap

May not occupy less bits, just look shorter in 
symbolic form

More instructions require longer op-codes

Register references require fewer bits



Why CISC (2)?

Faster programs?

Bias towards use of simpler instructions

More complex control unit

Microprogram control store larger

thus simple instructions take longer to execute

It is far from clear that CISC is the appropriate 
solution



RISC Characteristics

One instruction per cycle

Register to register operations

Few, simple addressing modes

Few, simple instruction formats

Hardwired design (no microcode)

Fixed instruction format

More compile time/effort



RISC v CISC

Not clear cut

Many designs borrow from both philosophies

e.g. PowerPC and Pentium II



RISC Pipelining

Most instructions are register to register

Two phases of execution

I: Instruction fetch

E: Execute

ALU operation with register input and output

For load and store

I: Instruction fetch

E: Execute

Calculate memory address

D: Memory

Register to memory or memory to register operation



Effects of Pipelining



Optimization of Pipelining

Delayed branch

Does not take effect until after execution of following 
instruction

This following instruction is the delay slot



Normal and Delayed Branch

Address Normal Delayed Optimized

100 LOAD X,A LOAD X,A LOAD X,A

101 ADD 1,A ADD 1,A JUMP 105

102 JUMP 105 JUMP 105 ADD 1,A

103 ADD A,B NOOP ADD A,B

104 SUB C,B ADD A,B SUB C,B

105 STORE A,Z SUB C,B STORE A,Z

106 STORE A,Z



Use of Delayed Branch



Controversy

 Quantitative

compare program sizes and execution speeds

 Qualitative

examine issues of high level language support and use of VLSI 
real estate

 Problems

No pair of RISC and CISC that are directly comparable

No definitive set of test programs

Difficult to separate hardware effects from complier effects

Most comparisons done on “toy” rather than production 
machines

Most commercial devices are a mixture



Required Reading

Stallings chapter 12

Manufacturer web sites




