William Stallings
Computer Organization
and Architecture

Chapter 12
Reduced Instruction
Set Computers

Major Advances in
Computers(1)

&8 The family concept

[~IIBM System/360 1964

AIDEC PDP-8

[~lSeparates architecture from implementation

&8 Microporgrammed control unit
[~lIdea by Wilkes 1951
~Produced by IBM S/360 1964

8 Cache memory
(AIIBM S/360 model 85 1969

Major Advances in
Computers(2)

& Solid State RAM
[~1(See memory notes)

F6 Microprocessors
AlIntel 4004 1971

&6 Pipelining
[AlIntroduces parallelism into fetch execute cycle
& Multiple processors

The Next Step - RISC

&8 Reduced Instruction Set Computer

&t Key features
[~lLarge number of general purpose registers

[~lor use of compiler technology to optimize register
use

[AlLimited and simple instruction set
[~AIEmphasis on optimising the instruction pipeline

Comparison of processors

CISC RISC Superscalar

¥ IBM DEC VAX Intel Motorola MIPS IBM Intel
& 370/168 11/780 486 88000 R4000 RS/6000 80960
& 1973 1978 1989 1988 1991 1990 1989
No. of instruction

208 303 235 51 94 184 62

Instruction size (octets)
¥ 2-6 2-57 1-11 4 32 4 4or8

¥ Addressing modes
¥ 4 22 11 3 1 2 11

¥ GP Registers
¥ 16 16 8 32 32 32 23-256

Control memory (k bytes) (microprogramming)
¥ 420 480 246 0 0 0 0

Driving force for CISC

> Software costs far exceed hardware costs
> Increasingly complex high level languages
> Semantic gap

> Leads to:

[~lLarge instruction sets

[~IMore addressing modes

[~IHardware implementations of HLL statements
Xle.g. CASE (switch) on VAX

(aWs) Qo QoD QoD

Intention of CISC

> Ease compiler writing

s Improve execution efficiency
[~lComplex operations in microcode

& Support more complex HLLs

QoD QoD

Execution Characteristics

> Operations performed
> Operands used
> Execution sequencing

> Studies have been done based on programs
written in HLLs

&8 Dynamic studies are measured during the
execution of the program

(aWs) Qo QoD QoD

Operations

8 Assignments
[AIMovement of data

&8 Conditional statements (IF, LOOP)
[~ISequence control

> Procedure call-return is very time consuming

> Some HLL instruction lead to many machine
code operations

Qo Qo

Relative Dynamic Frequency

Dynamic Machine Instruction | Memory Reference
Occurrence | (Weighted) (Weighted)
Pascal C Pascal C Pascal C

Assign 45 38 13 13 14 15

Loop 5 3 42 32 33 26

Call 15 12 31 33 44 45

If 29 43 11 21 7/ 13

GoTo - - - - -

Other 6 1 3 1 2 1

Operands

& Mainly local scalar variables

&8 Optimisation should concentrate on accessing
local variables

Pascal C Average
Integer constant 16 23 | 20
Scalar variable 58 53 | 55
Array/structure 26 24 | 25

Procedure Calls

> Very time consuming
> Depends on number of parameters passed
> Depends on level of nesting

> Most programs do not do a lot of calls followed
by lots of returns

® Most variables are local
> (c.f. locality of reference)

(aWs) Qo QoD QoD

Qo Qo

Implications

&6 Best support is given by optimising most used
and most time consuming features

& Large number of registers
[~lOperand referencing

&6 Careful design of pipelines
[~IBranch prediction etc.

&8 Simplified (reduced) instruction set

Large Register File

&6 Software solution
[~AIRequire compiler to allocate registers
[~lAllocate based on most used variables in a given
time
[~IRequires sophisticated program analysis
&8 Hardware solution
[~IHave more registers
[~IThus more variables will be in registers

Registers for Local Variables

> Store local scalar variables in registers

> Reduces memory access

> Every procedure (function) call changes locality
> Parameters must be passed

> Results must be returned

> Variables from calling programs must be
restored

Qo Qo (aWs) Qo QoD QoD

Register Windows

> Only few parameters

> Limited range of depth of call

> Use multiple small sets of registers

> Calls switch to a different set of registers

> Returns switch back to a previously used set of
registers

Qo (aWs) Qo QoD QoD

Register Windows cont.

&8 Three areas within a register set
[~IParameter registers

[~lLocal registers

[~ITemporary registers

[~AITemporary registers from one set overlap parameter
registers from the next

[AIThis allows parameter passing without moving data

Overlapping Register Windows

Parameter
Registers

Local
Registers

Temporary
Registers

‘-———Y-'-x.)

Call/Return

e A

Level

Parameter

Registers

Local
Registers

Temporary
Registers

Level J+1

Circular Buffer diagram

Operation of Circular Buffer

#When a call is made, a current window pointer
is moved to show the currently active register
window

&8 If all windows are in use, an interrupt is
generated and the oldest window (the one
furthest back in the call nesting) is saved to
memory

& A saved window pointer indicates where the
next saved windows should restore to

Global Variables

&t Allocated by the compiler to memory
AlInefficient for frequently accessed variables

& Have a set of registers for global variables

Registers v Cache

36 Large Register File

£ All local scalars
Individual variables
¥ Compiler assigned global variables

¥ Save/restore based on procedure
nesting

¥ Register addressing

Cache

Recently used local scalars
Blocks of memory
Recently used global variables

Save/restore based on
caching algorithm

Memory addressing

Referencing a Scalar -
Window Based Register File

Instruction

| [® |

Registers

v P Data
‘W#I Pl Decoder

Referencing a Scalar - Cache

Instruction

A

P Taps Data

P Data

Compiler Based Register
Optimization

& Assume small number of registers (16-32)

& Optimizing use is up to compiler

& HLL programs have no explicit references to registers
[Alusually - think about C - register int

&8 Assign symbolic or virtual register to each candidate
variable

& Map (unlimited) symbolic registers to real registers

& Symbolic registers that do not overlap can share real
registers

& If you run out of real registers some variables use
memory

Graph Coloring

& Given a graph of nodes and edges
&6 Assign a color to each node

& Adjacent nodes have different colors
¢ Use minimum number of colors

& Nodes are symbolic registers

& Two registers that are live in the same program
fragment are joined by an edge

& Try to color the graph with n colors, where nis the
number of real registers

& Nodes that can not be colored are placed in memory

Graph Coloring Approach

{a) Time sequence ol active use of registers {b) Register interference graph

Why CISC (1)?

& Compiler simplification?

[~IDisputed...

[~lComplex machine instructions harder to exploit
[~lOptimization more difficult

& Smaller programs?
[~IProgram takes up less memory but...
[~AIMemory is now cheap

[~AIMay not occupy less bits, just look shorter in
symbolic form
[XIMore instructions require longer op-codes
[XIRegister references require fewer bits

Why CISC (2)?

&6 Faster programs?

[~IBias towards use of simpler instructions
[~IMore complex control unit

[~AIMicroprogram control store larger

[~lthus simple instructions take longer to execute

It is far from clear that CISC is the appropriate
solution

RISC Characteristics

> One instruction per cycle

> Register to register operations

> Few, simple addressing modes

> Few, simple instruction formats

> Hardwired design (no microcode)
> Fixed instruction format

> More compile time/effort

Qo Qo Qo (aWs) Qo QoD QoD

RISC v CISC

&8 Not clear cut
&8 Many designs borrow from both philosophies
Fe.g. PowerPC and Pentium II

RISC Pipelining

> Most instructions are register to register

5 Two phases of execution
[AII: Instruction fetch
[~E: Execute
[XIALU operation with register input and output
#6 For load and store
[AIT: Instruction fetch

(~IE: Execute
[X]Calculate memory address

~ID: Memory
[XIRegister to memory or memory to register operation

QoD QoD

Effects of Pipelining

Load A M Load A M
Load B M [1]E[D] Load B M
Add € A+B Add € A+B
Store M C 1|E[D] Store M C 1|E[D]
Branch X [1[E] Branch X
NOOP
{a) Sequential execution
(b)) Two-way mpelined urming
Load A M Load A M
Load B M Load B M
NOOP NOOP
Add C A+B Add C A+B
Store M C Store M C
Branch X ElE Branch X
NOOP NOOP
NOOP

(C) Three-way pipelined tming
1d) Four-way pipelined timing

Optimization of Pipelining

& Delayed branch

[~IDoes not take effect until after execution of following
instruction

[AIThis following instruction is the delay slot

Normal and Delayed Branch

Address Normal Delayed Optimized
100 LOAD X,A | LOAD X,A | LOAD X,A
101 ADD 1,A ADD 1,A JUMP 105
102 JUMP 105 | JUMP 105 | ADD 1,A
103 ADD A,B NOOP ADD A,B
104 SUB C,B ADD A,B SUB C,B
105 STORE A,Z | SUBC,B STORE A,Z
106 STORE A,Z

Use of Delayed Branch

100 Load X, A 1 E1D 100} Load X, A [[E|D

101 Add 1. A I |E O] Jump 1035 I |E

102 Jump 106 I |E 102 Add I, A I |E

103 NOOP Lk 105 Store A, Z I |E (D
1 (M Store A, 7 | |E|D

(b)) Reversed instructions
{a) Inserted NOOP

Controversy

Quantitative
[~Alcompare program sizes and execution speeds

&8 Qualitative

[Alexamine issues of high level language support and use of VLSI
real estate
& Problems
[AINo pair of RISC and CISC that are directly comparable
No definitive set of test programs
Difficult to separate hardware effects from complier effects

[~A1Most comparisons done on “toy” rather than production
machines

[~IMost commercial devices are a mixture

Required Reading

&6 Stallings chapter 12
3 Manufacturer web sites

