William Stallings
Computer Organization
and Architecture

Chapter 11
CPU Structure
and Function

CPU Structure

38 CPU must:

[~IFetch instructions
[~lInterpret instructions
[~AIFetch data
[~IProcess data

[~IWrite data

Registers

& CPU must have some working space (temporary
storage)

> Called registers

>Number and function vary between processor
designs

& One of the major design decisions

¢ Top level of memory hierarchy

Qo Qo

User Visible Registers

> General Purpose
> Data

> Address

> Condition Codes

Qo Qo Qo QoD

General Purpose Registers (1)

D

> May be true general purpose

D

>May be restricted

D

> May be used for data or addressing

5 Data
[AlAccumulator

&6 Addressing
[~lSegment

Qo Qo Qo QoD

General Purpose Registers (2)

& Make them general purpose
[~lIncrease flexibility and programmer options
[~lIncrease instruction size & complexity

&6 Make them specialized
[~AISmaller (faster) instructions
[AlLess flexibility

How Many GP Registers?

> Between 8 - 32
> Fewer = more memory references

> More does not reduce memory references and
takes up processor real estate

3£ See also RISC

Qo Qo QoD

How big?

> Large enough to hold full address
>Large enough to hold full word

> Often possible to combine two data registers
[~IC programming

[~Aldouble int a;

[Allong int a;

Qo Qo QoD

Condition Code Registers

&6 Sets of individual bits
[~le.g. result of last operation was zero

#6 Can be read (implicitly) by programs
Ale.g. Jump if zero
& Can not (usually) be set by programs

Control & Status Registers

&8 Program Counter

&6 Instruction Decoding Register
& Memory Address Register

& Memory Buffer Register

g Revision: what do these all do?

Program Status Word

#8 A set of bits

&8 Includes Condition Codes
#6 Sign of last result

FgZero

& Carry

& Equal

&6 Overflow

&t Interrupt enable/disable

F& Supervisor

Supervisor Mode

> Intel ring zero

> Kernel mode

> Allows privileged instructions to execute
> Used by operating system

> Not available to user programs

Qo Qo Qo QoD

Qo

Other Registers

& May have registers pointing to:
[~IProcess control blocks (see O/S)
[~lInterrupt Vectors (see O/S)

& N.B. CPU design and operating system design
are closely linked

Example Register
Organizations

Data Registers General Registers General Registers
Dy AX |Accumulator EAX AX
D1 BXx Base EBX BX
D2 CX Counl ECX CX
D3 DX Data EDX DX
D
D5 Pointer & Index ESP 5P
D SP |Stack Poinier EBP BP
D7 BP |(Base Pointer Esl Sl
51 [Source Index EDI]|
Address Registers D1 | Desi Index
Al Program Status
Al Segment FLAGS Register
A2 Cs Code Instruction Pointer
A3 DS Data
Ad 55 Stack
AS ES Extra {¢) 80386 - Pentium 11
Ab
AT Program Status
AT Instr Ptr
Flags
Program Status
Program Counter (b) 8086
| Status Register

(a) MC63000

Foreground Reading

&6 Stallings Chapter 11
&8 Manufacturer web sites & specs

Instruction Cycle

#8 Revision
¢t Stallings Chapter 3

Indirect Cycle

> May require memory access to fetch operands

> Indirect addressing requires more memory
accesses

& Can be thought of as additional instruction
subcycle

QoD QoD

Instruction Cycle with Indirect

Fetch

Interrupt Indirect

Instruction Cycle State

Diagram

Indirection

~)

Multiple

operands

Instructin

operation
decoding

Operand
address
calculation

[mstruction complele,
feteth nexl instruction

Draia
Dperation

Feturn Tor string
oF vector data

Indirection

Operand

store

Mlultiple
resulls

Operand
address
caleulatio

Mo

imierrup

Data Flow (Instruction Fetch)

> Depends on CPU design
2 In general:

QoD QoD

38 Fetch

[AIPC contains address of next instruction

[~lAddress moved to MAR

[~l1Address placed on address bus

[~lControl unit requests memory read

[~IResult placed on data bus, copied to MBR, then to IR
[~IMeanwhile PC incremented by 1

Data Flow (Data Fetch)

5 IR is examined

s If indirect addressing, indirect cycle is
performed

[~IRight most N bits of MBR transferred to MAR
[~lControl unit requests memory read

[~IResult (address of operand) moved to MBR

QoD QoD

Data Flow (Fetch Diagram)

CPU

PC —"5MAR »

Memory

Control :>,
Unit

IR K ——MBR K

Address Data Control

Bus Bus Bus
MBE = Memaory bulfer register
MAR = Memory address register
IR = Instruction register
PC = Program counter

Data Flow (Indirect Diagram)

CPU

S MAR

L

Control
Unit

K=
—>

MBR

=
=y

Memory

Address Data Control

Bus

Bus

Bus

Data Flow (Execute)

> May take many forms
> Depends on instruction being executed

> May include
[AIMemory read/write
AlInput/Output
[~IRegister transfers
[~JALU operations

Qo QoD QoD

Data Flow (Interrupt)

& Simple

& Predictable

&8 Current PC saved to allow resumption after interrupt
&8 Contents of PC copied to MBR

& Special memory location (e.g. stack pointer) loaded to
MAR

& MBR written to memory
¢ PC loaded with address of interrupt handling routine

&8 Next instruction (first of interrupt handler) can be
fetched

Data Flow (Interrupt Diagram)

CPU

PC MAR J—>
ﬁ %h‘lemﬂr}r

Control ::),

Unit

> MBR | :{>‘

Address Data Control
Bus Bus Bus

Prefetch

> Fetch accessing main memory
> Execution usually does not access main memory

> Can fetch next instruction during execution of
current instruction

&b Called instruction prefetch

Qo Qo QoD

Improved Performance

38 But not doubled:

[~lFetch usually shorter than execution
[XIPrefetch more than one instruction?

[~AIAny jump or branch means that prefetched
instructions are not the required instructions

#8 Add more stages to improve performance

Pipelining

> Fetch instruction

> Decode instruction

> Calculate operands (i.e. EAs)
> Fetch operands

> Execute instructions

&8 Write result

Qo Qo Qo QoD

Qo

& Overlap these operations

Timing of Pipeline

Time

10|11 [121314

9

8

Instruction 1

Instruction 2

Lo
=
=]

=
o
=
1=

—
o
=

]

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Instruction 9

Branch in a Pipeline

>

Branch Penalty

+

Time

il
T- —
.._.T._., 55
Tttt TTTTTTTmmmm T T T i N
= =
cTTTTTTTEEEEEEEEEEEEE TR P TR
- -
=]
e e e o e X--F-
] =
= =
. i
W &
[= - — o
= = ! =] =
P I S D
= o =) =
= B S
] = =
= =
=
i 1) -+ W & ~ w &
= - = = = = = — —
= =] = = = = = = =
=] = = = = =] = S <
- - = = [*] - -) —
= = = = = = = o >
e e = = o = = = =
2 T 2 = 2 2 2 = &
o W W W W o W L L
=] = = = = =] = 7 7
L= =] (=] (= (= = = = =
[[

Dealing with Branches

& Multiple Streams

&t Prefetch Branch Target
& Loop buffer

& Branch prediction

& Delayed branching

Multiple Streams

Have two pipelines
Prefetch each branch into a separate pipeline
Jse appropriate pipeline

Qo Qo QoD
(O A° (O A° (O A®

&b Leads to bus & register contention

& Multiple branches lead to further pipelines being
needed

Prefetch Branch Target

& Target of branch is prefetched in addition to
instructions following branch

&t Keep target until branch is executed
8 Used by IBM 360/91

Loop Buffer

& Very fast memory

#8 Maintained by fetch stage of pipeline

&6 Check buffer before fetching from memory
& Very good for small loops or jumps

g c.f. cache

3 Used by CRAY-1

Branch Prediction (1)

&t Predict never taken
[~lJAssume that jump will not happen
[~lAlways fetch next instruction
[~168020 & VAX 11/780
AIVAX will not prefetch after branch if a page fault
would result (O/S v CPU design)
&6 Predict always taken
[~lAssume that jump will happen
[~lAlways fetch target instruction

Branch Prediction (2)

&t Predict by Opcode

[~ISome instructions are more likely to result in a jump
than thers

[~ICan get up to 75% success

38 Taken/Not taken switch

[~IBased on previous history
[~1Good for loops

Branch Prediction (3)

& Delayed Branch
[~IDo not take jump until you have to
[~IRearrange instructions

Branch Prediction State

Diagram
Not Taken
Taken
Taken
S
=
=
2 <
= r
Not Taken

Predict Not Taken

Not Taken

Predict
Not Taken

Taken

Foreground Reading

&8 Processor examples
&6 Stallings Chapter 11
& Web pages etc.

