
William Stallings

Computer Organization

and Architecture

Chapter 11

CPU Structure

and Function

CPU Structure

CPU must:

Fetch instructions

Interpret instructions

Fetch data

Process data

Write data

Registers

CPU must have some working space (temporary
storage)

Called registers

Number and function vary between processor
designs

One of the major design decisions

Top level of memory hierarchy

User Visible Registers

General Purpose

Data

Address

Condition Codes

General Purpose Registers (1)

May be true general purpose

May be restricted

May be used for data or addressing

Data

Accumulator

Addressing

Segment

General Purpose Registers (2)

Make them general purpose

Increase flexibility and programmer options

Increase instruction size & complexity

Make them specialized

Smaller (faster) instructions

Less flexibility

How Many GP Registers?

Between 8 - 32

Fewer = more memory references

More does not reduce memory references and
takes up processor real estate

See also RISC

How big?

Large enough to hold full address

Large enough to hold full word

Often possible to combine two data registers

C programming

double int a;

long int a;

Condition Code Registers

Sets of individual bits

e.g. result of last operation was zero

Can be read (implicitly) by programs

e.g. Jump if zero

Can not (usually) be set by programs

Control & Status Registers

Program Counter

Instruction Decoding Register

Memory Address Register

Memory Buffer Register

Revision: what do these all do?

Program Status Word

A set of bits

Includes Condition Codes

Sign of last result

Zero

Carry

Equal

Overflow

Interrupt enable/disable

Supervisor

Supervisor Mode

Intel ring zero

Kernel mode

Allows privileged instructions to execute

Used by operating system

Not available to user programs

Other Registers

May have registers pointing to:

Process control blocks (see O/S)

Interrupt Vectors (see O/S)

N.B. CPU design and operating system design
are closely linked

Example Register

Organizations

Foreground Reading

Stallings Chapter 11

Manufacturer web sites & specs

Instruction Cycle

Revision

Stallings Chapter 3

Indirect Cycle

May require memory access to fetch operands

Indirect addressing requires more memory
accesses

Can be thought of as additional instruction
subcycle

Instruction Cycle with Indirect

Instruction Cycle State

Diagram

Data Flow (Instruction Fetch)

Depends on CPU design

In general:

Fetch

PC contains address of next instruction

Address moved to MAR

Address placed on address bus

Control unit requests memory read

Result placed on data bus, copied to MBR, then to IR

Meanwhile PC incremented by 1

Data Flow (Data Fetch)

IR is examined

If indirect addressing, indirect cycle is
performed

Right most N bits of MBR transferred to MAR

Control unit requests memory read

Result (address of operand) moved to MBR

Data Flow (Fetch Diagram)

Data Flow (Indirect Diagram)

Data Flow (Execute)

May take many forms

Depends on instruction being executed

May include

Memory read/write

Input/Output

Register transfers

ALU operations

Data Flow (Interrupt)

 Simple

 Predictable

 Current PC saved to allow resumption after interrupt

 Contents of PC copied to MBR

 Special memory location (e.g. stack pointer) loaded to
MAR

 MBR written to memory

 PC loaded with address of interrupt handling routine

 Next instruction (first of interrupt handler) can be
fetched

Data Flow (Interrupt Diagram)

Prefetch

Fetch accessing main memory

Execution usually does not access main memory

Can fetch next instruction during execution of
current instruction

Called instruction prefetch

Improved Performance

But not doubled:

Fetch usually shorter than execution

Prefetch more than one instruction?

Any jump or branch means that prefetched
instructions are not the required instructions

Add more stages to improve performance

Pipelining

Fetch instruction

Decode instruction

Calculate operands (i.e. EAs)

Fetch operands

Execute instructions

Write result

Overlap these operations

Timing of Pipeline

Branch in a Pipeline

Dealing with Branches

Multiple Streams

Prefetch Branch Target

Loop buffer

Branch prediction

Delayed branching

Multiple Streams

Have two pipelines

Prefetch each branch into a separate pipeline

Use appropriate pipeline

Leads to bus & register contention

Multiple branches lead to further pipelines being
needed

Prefetch Branch Target

Target of branch is prefetched in addition to
instructions following branch

Keep target until branch is executed

Used by IBM 360/91

Loop Buffer

Very fast memory

Maintained by fetch stage of pipeline

Check buffer before fetching from memory

Very good for small loops or jumps

c.f. cache

Used by CRAY-1

Branch Prediction (1)

Predict never taken

Assume that jump will not happen

Always fetch next instruction

68020 & VAX 11/780

VAX will not prefetch after branch if a page fault
would result (O/S v CPU design)

Predict always taken

Assume that jump will happen

Always fetch target instruction

Branch Prediction (2)

Predict by Opcode

Some instructions are more likely to result in a jump
than thers

Can get up to 75% success

Taken/Not taken switch

Based on previous history

Good for loops

Branch Prediction (3)

Delayed Branch

Do not take jump until you have to

Rearrange instructions

Branch Prediction State

Diagram

Foreground Reading

Processor examples

Stallings Chapter 11

Web pages etc.

