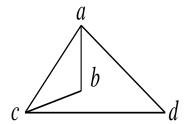
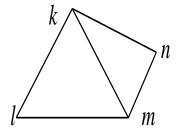

Graf, 'Tool' Praktis untuk Merepresentasikan Situasi dan Kondisi Realitas Dalam Membantu Mendapatkan Solusi

Universitas Bung Hatta - Padang

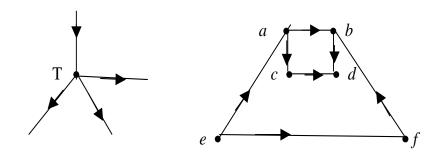

desfilwa@yahoo.com



Graf Isomorpik

Dua buah graf dikatakan **isomorpik**jika keduanya mempunyai jumlah
vertek yang sama dan lintasanlintasannya berkorespondensi.
Artinya dua graf dikatakan
isomorpik jika mereka **mempre- sentasikan situasi yang sama**walaupun tampilan mereka berbeda.

Graf Berarah


• derajat suatu vertek *a* atau

$$deg(a) = indeg(a) + outdeg(a)$$

• Jumlah derajat keseluruhan dari vertek:

$$m = 2 \{ \text{indeg } (a_1) + \text{indeg } (a_2) + \text{indeg } (a_3) + \dots + \text{indeg } (a_n) \}$$

- = 2 {outdeg (a_1) + outdeg (a_2) + outdeg (a_3) +... + outdeg (a_n) }
- = $\{ deg (a_1) + deg (a_2) + deg (a_3) + ... + deg (a_n) \}$

Teorema 1

Jumlah derajat dari semua vertek dalam setiap graf selalu bilangan genap.

Teorema 2

Dalam setiap graf, banyaknya vertek yang berderajat ganjil selalu merupakan bilangan genap.

Relasi dan Graf

Relasi

Graf

refleksi

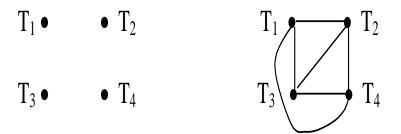
graf dengan

lup pada setiap verteknya

simetri

graf dengan

lintasan tak berarah


transitif

graf

jika ada jalur yang membuat *a* dan *b* akhirnya terhubung, juga terdapat lintasan yang langsung menghubungkan *a* dan *b*.

Aplikasi Sederhana

1. Analisis Kompetisi Antar Tim

kompetisi sepak bola yang diikuti oleh 4 tim/kesebelasan

Jika T_1 vs T_3 dimenangkan oleh T_1 , berarah dari T_1 ke T_3 yang didefinisikan sebagai T_1 mengalahkan T_3 .

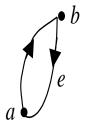
- T₁ kalah dari T₄, menang dari T₃ dan seri dengan T₂;
- T₂ kalah dari T₄, seri dengan T₁ dan menang dari T₃;
- T_3 kalah dari T_1 dan T_2 , seri dengan T_4 ;
- T₄ menang dari T₁ dan T₂, seri dengan T₃.

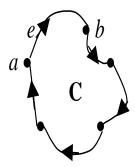
Skor = $3 \times outdeg(a) + deg(lintasan tak berarah yang terhubung ke a)$.

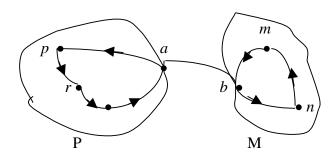
2. <u>Permasalahan lalu lintas satu arah</u> <u>dan dua arah</u>

Untuk jalur dua arah biasanya diwakili dengan lintasan tak berarah, walaupun kadang-kadang menggunakan dua lintasan dengan dua arah yang berlawanan.

Permasalahan: Mungkinkah pemerintah menerapkan jalur lalu lintas satu arah untuk setiap jalan di suatu kota?

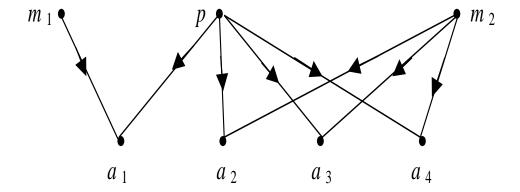

Jembatan


- Lintasan *e* antara *a* dan *b* dikatakan "*jembatan*" jika *e* = *ab* merupakan satu-satunya lintasan yang menghubungkan *a* dan *b*. Jembatan *e* harus merupakan lalu lintas dua arah supaya tidak menutup akses masuk atau akses keluar dari suatu lokasi.
- Jika e = ab bukan jembatan, maka harus terdapat jalur lain (yang tidak langsung) yang juga menghubungkan a dan b. Dalam hal ini e dikatakan sebuah "lintasan siklus"

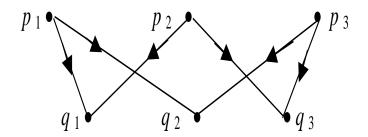

- Teorema 3. Jika G graf terhubung tak berarah, maka selalu bisa dibuat lintasan-lintasan siklus berarah (lintasan satu arah) pada Graf G dengan tetap membiarkan jembatan-jembatan tak berarah, sedemikian sehingga terdapat satu jalur yang menghubungkan setiap vertek dengan vertek lainnya.
- jika dibiarkan jembatan-jembatan tunggal sebagai lalu lintas dua arah, maka jalan-jalan lain dapat dibuat satu arah sedemikian sehingga hubungan antara setiap lokasi/titik tetap terjamin atau jaringan tetap bisa kemana-mana.

Bukti

Karena e = ab adalah jembatan penghubung a dan b, e lalu lintas dua arah, sehingga untuk setiap vertek p di P, kita dapat bergerak melalui lintasan berarah L menuju a. dan kemudian menuju b melalui e.
Sebaliknya jika berangkat dari b ke a melalui e, dengan beberapa lintasan berarah M menuju p. Akibatnya kita dapat menambahkan e ke P dan mempunyai bagian yang lebih besar dari graf G yang berarah secara teratur (satu arah kecuali jembatan)



3. Graf Genetika


- setiap individu mempunyai dua orang tua, satu laki-laki dan satu perempuan, maka graf mempunyai tepat 2 lintasan menuju setiap vertek, atau indeg(a) = 2, untuk setiap a yang merupakan vertek.
- indeg $(a) \le 2$.

Permasalahan

graf dengan indeg(a) ≤ 2 , untuk setiap vertek a, apakah ini merupakan graf genetika?

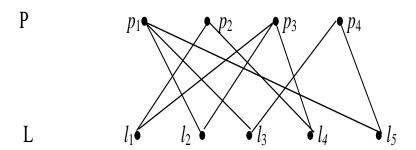
• jika vertek dibagi dalam dua kelompok jenis kelamin, laki-laki dan perempuan, maka dua lintasan yang menuju setiap vertek tersebut selalu berasal dari dua jenis kelamin yang berbeda?

Ada tiga kondisi yang harus dipenuhi dalam relasi garis keturunan:

setiap individu mempunyai paling banyak dua orang tua

setiap pasang orang tua punya jenis kelamin yang berbeda

tidak ada individu yang keturunannya (langsung/tidak langsung) adalah dirinya sendiri

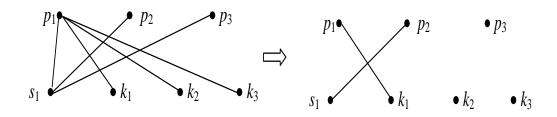

Tiga kondisi di atas ekuivalen dengan graf genetika berikut:

indeg $(a) \le 2$ untuk setiap vertek a

- jumlah lintasan dalam graf dengan barisan pergantian sirkular merupakan kelipatan 4 (dapat dibagi 4)
- graf berarah yang terbentuk tidak siklik.

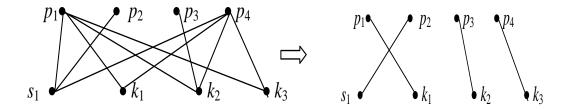
4. Lowongan Pekerjaan dan Pelamar

- Jika grup lowongan pekerjaan (L) dan grup pelamar (P), dikonstruksikan graf dengan menggambar lintasan (p, l) menghubungkan setiap pelamar p dalam P dengan lowongan l dalam L dimana pelamar itu memenuhi syarat/kualifikasi.
- Jadi tidak ada lintasan yang menghubungkan dua pelamar atau dua lowongan. Setiap lintasan hanya menghubungkan satu vertek yang mewakili pelamar dan satu vertek yang mewakili lowongan pekerjaan yang tersedia.



- Permasalahannya adalah: "Mungkinkah untuk menempatkan semua pelamar bisa diterima untuk posisi/lowongan dimana mereka memenuhi kualifikasi?".
- Untuk memecahkan permasalahan ini suatu kondisi berikut harus dipenuhi, dimana untuk setiap k pelamar, tersedia paling sedikit k lowongan yang secara kolektif, mereka memenuhi kualifikasi.
- Contoh, tersedia 4 lowongan (1 orang sopir dan 3 orang teknisi komputer). Jika ada tiga pelamar, dua orang kualifikasi sopir, satu orang teknisi komputer yang juga bisa bertukang, seorang pelamar tetap tidak mendapatkan pekerjaan.
- Walaupun semua pelamar memiliki paling tidak satu kualifikasi, dan lowongan pekerjaan lebih banyak dari pelamar, tetapi jumlah lowongan untuk teknisi komputer lebih sedikit dari pelamarnya.

4 lowongan pekerjaan untuk tiga orang programmer komputer (k) dan satu orang untuk sopir (s).


Jika ada tiga pelamar, dua orang memenuhi kualifikasi sopir,

satu orang programmer komputer yang juga sopir,

4 lowongan pekerjaan yang sama seperti di atas, tetapi kemudian ada 4 orang pelamar dimana satu orang memenuhi kualifikasi sopir, satu orang memenuhi kualifikasi programmer komputer, dan dua orang memenuhi kualifikasi programmer

komputer yang juga bisa sopir

5. Mencari rute terpendek

- Hal ini sudah sangat umum dilakukan.
- Jika dari *a* ke *b* dapat ditempuh melalui beberapa rute/jalur yang melalui daerah/titik-titik yang berbeda, maka rute terpendek dari *a* ke *b* dapat dicari dengan menghitung jumlah panjang masing-masing partisi lintasan yang menghubungkan *a* dan *b*, dan dicari jumlah panjangnya yang minimal.

Last

- Tulisan pertama tentang graf ditulis oleh Euler (Swis) th.1736, awalnya dianggap kurang signifikan karena lebih banyak berhubungan dengan 'puzzle' atau hiburan (Ore: 1990:3).
- Belakangan, graf merupakan 'tool' yang alami untuk merepresentasikan topik-topik matematika, seperti teori relasi yang bersifat matematis.
- Sejak abad 19, graf juga merepresentasikan sirkuit/jaringan listrik, diagram-diagram melekul, masalah jalur transportasi dan sebagainya.
- Dalam matematika, teori graf itu sendiri diklasifikasikan sebagai cabang dari topologi, tetapi berhubungan erat dengan aljabar (relasi), dan teori matrik (Ore, 1990:3).

Terima Kasih