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Abstract. The possibility of suppressing self-excited vibrations of mechanical systems using
parametric excitation is discussed. We consider a two-mass system of which the main mass is
excited by a flow-induced, self excited force. A single mass which acts as a dynamic absorber
is attached to the main mass and, by varying the stiffness between the main mass and the
absorber mass, represents a parametric excitation. It turns out that for certain parameter
ranges full vibration cancellation is possible. Using the averaging method the fully non-linear
system is investigated producing as non-trivial solutions stable periodic solutions and tori.
In the case of a small absorber mass we have to carry out a second-order calculation.

1. Introduction

In this paper we solve an open problem formulated by Ecker and Tondl [1]; also we analyse
their model to discover many interesting bifurcational phenomena.

Suppressing flow-induced vibrations by using a conventional spring-mass absorber system
has often been investigated and applied in practice. It is also well-known that self-excited
vibrations can be suppressed by using different kinds of damping, see [2] and [3]. However,
only little attention has been paid to vibration suppression by using interaction of different
types of excitation.

In the monograph by Tondl [4], some results on the investigation of synchronization phe-
nomena by means of parametric resonances have lead to the idea to apply a parametric ex-
citation for suppressing self-excited vibrations. The conditions for full vibration suppression
(also called quenching) were formulated first in [5] and [6].

Using the Harmonic Balance Method (see [7]and [8]) in Ecker and Tondl [1] a two-mass
system is studied; see Figure 1. The main mass is excited by a flow-induced, self-excited
force, in which the self-excitation is of Rayleigh type. This mass is connected to the absorber
mass by a linear spring. The connecting stiffness between two masses is a harmonic function
of time and represents a parametric excitation. The analysis in [1] shows that the interval
of self-excitation can exist in the vinicity of the combination resonance η = Ω2 − Ω1, where
Ω1 and Ω2 are the natural frequencies of the linearized system without damping and η is
the parametric excitation frequency. There are two conditions for suppressing self-excited
vibrations. The first condition involves the overall damping of the system. The second one is
related to the parametric excitation frequency. It determines whether full quenching can be
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2 Suppressing flow-induced vibration by parametric excitation

achieved or not in a certain interval. In general only a few frequency ratios can be used to
obtain the necessary parametric resonance; see for instance [[1],[2],[4],[8]].

A numerical investigation of the fully non-linear system in [1] shows that the contribution
of the parametric excitation can be predicted correctly by their first order approximative
analysis only for values of the mass ratio M ≥ 0.1. We will show that for smaller mass ratio
we have to re-scale the system and a higher order approximation will be necessary to obtain
more accurate results for lower values of the mass ratio.

In this paper the same system as in [1] is considered; the model is described in section 2.
We will use the averaging method and numerical bifurcation techniques to study the system.
The first order approximation is used to analyze the conditions for full vibration suppression
in section 4-6. It turns out that full vibration cancellation is possible in an open parameter
set. This is illustrated analytically. In section 7 and 8 we study what happens when vibration
cancellation does not take place. It turns out that several Hopf bifurcations are possible,
producing periodic solutions. Also Neimark-Sacker bifurcations arise which produce stable
tori with relative high amplitudes. Finally, in section 9 we return to the realistic problem of a
small absorber mass. A second-order approximation has to be calculated in this case with as
a result that, although full vibration cancellation is impossible, a fairly large part of vibration
quenching can be achieved.

2. The Model

Our study is based on a model for the suppression of flow-induced vibrations by a dynamic
absorber with parametric excitation formulated in [1]. Consider a two-mass system consisting
of a main mass m2 which is in flow-induced vibration and an absorber mass m1 which is
attached to the main mass by a spring-damper element, see Figure 1. The elastic mounting
k(t) of the absorber mass is a combination of a spring and a device operating such that the
stiffness k(t) is changed periodically. Damping is represented by the linear viscous damper c1.
The main mass m2 is supported by a spring with constant stiffness k2; it has a linear viscous
damper with damping parameter c2. In actual constructions one usually has m1 < m2.

A flow-generated self-excited force is acting on the main mass m2 with critical flow velocity
Uc and a limited vibration amplitude in the over-critical region; as usual it is represented by
a Rayleigh force.

The displacements of mass m1 and mass m2 are denoted by the coordinates y1 and y2, re-
spectively. The variation of the stiffness of the absorber element is supposed to be a harmonic
function with a small amplitude.

This system is represented by the following nonlinear equations of motion

m1y
′′
1 + c1(y′1 − y′2)+

+ k1(1 + ε cosωτ)(y1 − y2) = 0,

m2y
′′
2 − c1(y′1 − y′2)+

− k1(1 + ε cosωτ)(y1 − y2) + c2y
′
2 + k2y2 − b◦U2(1− γ◦y′2

2)y′2 = 0.

(2.1)

where ε is a small positive parameter, 0 < ε << 1. In the decoupled system, where we only
consider vibrations of the main mass m2, self-excited vibrations occur if c2 − b◦U2 < 0.
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Figure 1. System consisting of a flow-excited main mass m2 and a vibration
absorber m1 with time-dependent connecting stiffness k(t).

3. Transformation of the system to a standard form

Dimensionless coordinates xj can be defined with respect to a given reference value y◦:

(3.1) xj = yj/y◦ j = 1, 2,

By introducing the characteristic parameters of the system

(3.2) ω̄2 =
k1

m1
, ω◦2 =

k2

m2
, η =

ω

ω◦
, Q2 =

ω̄2

ω◦2
,

and by using the time-transformation

(3.3) ω◦t = τ,

the following dimensionless form of system (2.1) is obtained

x′′1 + κ1(x′1 − x′2)+

+ Q2(1 + ε cos ητ)(x1 − x2) = 0,

x′′2 −Mκ1(x′1 − x′2)+

−MQ2(1 + ε cos ητ)(x1 − x2) + κ2x
′
2 + x2 − βV 2(1− γx′2

2)x′2 = 0.

(3.4)

where

κ1 =
c1

m1ω◦
, κ2 =

c2

m2ω◦
, β =

b◦U◦2

m2ω◦

V 2 =
U2

U◦2
, γ = γ◦ω◦2 , M =

m1

m2
.

(3.5)



4 Suppressing flow-induced vibration by parametric excitation

Parameter U◦ is a chosen reference value for the flow velocity. When U◦ reaches the critical
flow velocity Uc =

√
c2/b◦, the relative critical flow velocity is Vc = 1.

In order to transform the system into a standard form and to make the size of the parame-
ters more explicit, we scale κ1,2 = εκ̄1,2, and β = εβ̄ while assuming that the other parameters
are O(1) with respect to ε. However, in quite a number of applications the absorber mass m1

will be small with respect to the main mass m2; we shall return to this case in section 9. If
ε = 0, the linear parts of (3.4) now depend on the mass ratio M and the frequency ratio Q.
Note, that if ε > 0, three frequencies play a part. Using the linear transformation

x1 = x̄1 + x̄2,

x2 = a1x̄1 + a2x̄2.
(3.6)

leads to the standard form

x̄′′1 + Ω2
1x̄1 =− ε

a1 − a2
F1(x̄1, x̄

′
1, x̄2, x̄

′
2, ητ),

x̄′′2 + Ω2
2x̄2 =− ε

a1 − a2
F2(x̄1, x̄

′
1, x̄2, x̄

′
2, ητ),

(3.7)

where the natural frequencies of the linearized system without damping and for ε = 0, Ω1

and Ω2, are

(3.8) Ω2
1,2 = 1/2

(
1 + Q2(1 + M)

)∓
√

1/4(1 + Q2(1 + M))2 −Q2

and a1,2 satisfy the relations

(3.9) Q2a2
j + (MQ2 + 1−Q2)aj −Q2M = 0, (j = 1, 2)

from which follows

(3.10) a1,2 =
1

Q2

(
1
2
(−MQ2 − 1 + Q2)±

√
1
4
(MQ2 + 1 + Q2)2 −Q2

)
.

Note that the functions F1 and F2 (system (3.7)) are depending on the parametric excitation
frequency η, and that the following conditions hold

(3.11) Ω2 > Ω1, a1a2 = −M, 0 < a1 < 1, and a2 < −M.

4. The Normal Form by Averaging

We will use the method of averaging to study the system near the combination resonance
Ω2 − Ω1 = η◦. Transforming t → ητ and allowing detuning near η◦ by putting

(4.1) η = η◦ + εσ̄.

system (3.7) becomes to first order in ε

¨̄x1 + ω2
1x̄1 =− ε

(a1 − a2)η2◦
F̄1(x̄1, ˙̄x1, x̄2, ˙̄x2, t),

¨̄x2 + ω2
2x̄2 =− ε

(a1 − a2)η2◦
F̄2(x̄1, ˙̄x1, x̄2, ˙̄x2, t).

(4.2)

where ω1,2 = Ω1,2

η◦ and
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F̄1 = −2(a1 − a2)ω1Ω1σ̄x̄1 + θ11η◦ ˙̄x1 + θ12η◦ ˙̄x2 − (Q11x̄1 + Q12x̄2) cos t + Bη3
◦(a1 ˙̄x1 + a2 ˙̄x2)3

F̄2 = −2(a1 − a2)ω2Ω2σ̄x̄2 + θ21η◦ ˙̄x1 + θ22η◦ ˙̄x2 − (Q21x̄1 + Q22x̄2) cos t−Bη3
◦(a1 ˙̄x1 + a2 ˙̄x2)3

(4.3)

Q12 = Q2(a2 + M)(1− a2)(4.4)
Q21 = −Q2(a1 + M)(1− a1)(4.5)
θ11 = −κ̄1(a2 + M)(1− a1) + a1(κ̄2 − β̄V 2)(4.6)
θ22 = κ̄1(a1 + M)(1− a2)− a2(κ̄2 − β̄V 2)(4.7)
B = β̄V 2γ(4.8)

To study the behavior of the solutions, we transform

x̄1 = u1 cosω1t + v1 sinω1t, ˙̄x1 = −ω1u1 sinω1t + ω1v1 cosω1t

x̄2 = u2 cosω2t + v2 sinω2t, ˙̄x2 = −ω2u2 sinω2t + ω2v2 cosω2t.
(4.9)

This transformation is useful when studying the stability of the trivial solution of system
(4.2); stability implies the possibility of vibration cancellation. In later sections the polar
coordinate transformation will be useful for studying non-trivial solutions. After averaging
over 2π and then rescaling time by a factor ε

2(a1−a2)η2◦
, we obtain the normal form

u̇1 =−θ11η◦u1−2(a1 − a2)Ω1σ̄v1− 1
2

Q12

ω1
v2− 3

2
η◦3Bu1

(
1
2
ω2

1a3
1(u

2
1+v2

1) + ω2
2a1a

2
2(u

2
2+v2

2)
)

,

v̇1 =2(a1 − a2)Ω1σ̄u1−θ11η◦v1+
1
2

Q12

ω1
u2− 3

2
η◦3Bv1

(
1
2
ω2

1a3
1(u

2
1+v2

1) + ω2
2a1a

2
2(u

2
2+v2

2)
)

,

u̇2 =−1
2

Q21

ω2
v1−θ22η◦u2−2(a1 − a2)Ω2σ̄v2+

3
2
η◦3Bu2

(
a2
1a2ω

2
1(u2

1+v2
1) +

1
2
a3
2ω

2
2(v2

2+u2
2)

)
,

v̇2 =
1
2

Q21

ω2
u1+2(a1 − a2)Ω2σ̄u2−θ22η◦v2+

3
2
η◦3Bv2

(
a2
1a2ω

2
1(u2

1+v2
1) +

1
2
a3
2ω

2
2(v2

2+u2
2)

)

(4.10)

where we use again the dot to indicate derivation with respect to the re-scaled time.
System (4.10) can be reduced to the three-dimension system by transforming the system

using the following transformation,

ui = −Ri cosψi, and vi = Ri sinψi, i = 1, 2,(4.11)

to transform system (4.10) to

Ṙ1 = −θ11η◦R1 − 1
2

Q12

ω1
R2 sinΨ− 3

4
η◦3Ba3

1ω
2
1R

3
1 −

3
2
η◦3Ba1a

2
2ω

2
2R1R

2
2

Ṙ2 = −θ22η◦R2 +
1
2

Q21

ω2
R1 sinΨ +

3
4
η◦3Ba3

2ω
2
2R

3
2 +

3
2
η◦3Ba2

1a2ω
2
1R2R

2
1

Ψ̇ = 2(a1 − a2)η◦σ̄ + (
1
2

Q21

ω2

R1

R2
+

1
2

Q12

ω1

R2

R1
) cosΨ

(4.12)
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where Ψ = ψ2 − ψ1 and Ri =
√

u2
i + v2

i , i = 1, 2. Note that fixed points of system (4.12)
correspond to periodic solutions of system (4.10). We also obtain the normal form system
(4.12) by directly introducing the polar coordinate transformation x̄i = Ri cos(ωit + ψi) and
˙̄xi = −Ri cos(ωit + ψi) (i = 1, 2) to transform system (4.2) and average it over 2π, rescaling
time by ε

2(a1−a2)η2◦
.

5. Conditions for Vibration Cancellation:Linear Case

Systems involving interaction of self-excitation and parametric excitation have been studied
in [3], [6], and [8] . In the methods used there an implicit assumption on the magnitude of
the parameters corresponds with our assumptions in the preceding section; in section 9 this
will change. Here we present an independent analysis of the stability of the trivial solution
based on the averaged normal form (4.10).

The linearization of averaged system (4.10) at the trivial solution has the form

(5.1)




−θ11η◦ −2(a1 − a2)Ω1σ̄ 0 −1
2

Q12

ω1

2(a1 − a2)Ω1σ̄ −θ11η◦ 1
2

Q12

ω2
0

0 −1
2

Q21

ω2
−θ22η◦ −2(a1 − a2)Ω2σ̄

1
2

Q21

ω2
0 −2(a1 − a2)Ω2σ̄ −θ22η◦


 .

where its characteristic equation can be expressed as

(5.2) λ4 + q1λ
3 + q2λ

2 + q3λ + q4 = 0,

in which q1, q2, q3 and q4 depend on the parameters. Note that we have Q12 < 0 and
Q21 < 0. The linear damping coefficients θ11 and θ22 have a positive sign if β̄V 2 − κ̄2 < 0;
in this case there is no self-excitation. In the case of self-excitation β̄V 2 − κ̄2 > 0, there are
three conditions for θ11 and θ22: θ11 < 0 and θ22 > |θ11|, θ22 < 0 and θ11 > |θ22|, and both of
θ22 and θ11 are positive.

The signs of the linear damping coefficients θ11 and θ22 are important to determine condi-
tions under which the vibrations can be suppressed. At the boundaries θ11 = 0 and θ22 = 0
from (3.10), (4.7), and (4.8), we have

Qi ≡ Q =
√

ci

M + (1−M)ci − c2
i

, (i = 1, 2).(5.3)

where Q1 corresponds to θ11 = 0 and Q2 to θ22 = 0. The value of ci is depending on κ̄1,2, β̄,
and V .

In Figure 2 and Figure 3 we show the boundaries when the θ11 and θ22 change sign. For
numerical calculations we use the parameter sets from [1], as listed in Table 1.

Table 1: Parameter values for numerical examples.
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Parameter Set I Set II
ε 0.1 0.2
κ1 0.1 0.2
κ2 0.1 0.1
β 0.1 0.2
V

√
2.1

√
2.1

γ 4 4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5
M

I

Mass Ratio M

Fr
eq

ue
nc

y 
R

at
io

 Q

M* 0.1=

I

IV

II

Q
2

III

Q
1

II

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1
M

I
I

II

II

III

IV

M*=0.6

Fr
eq

ue
nc

y 
R

at
io

 Q

Mass Ratio M

Q
1

Q
2

(a) (b)

Figure 2. Boundaries of θ11 and θ22 in the (M,Q)-plane for Parameter
Set I , see Table 1. The curves Q1 and Q2 correspond with θ11 = 0 and
θ22 = 0, respectively. Region I, θ11 < 0 and θ22 > 0. Region II, θ11 >
0 and θ22 < 0. Both θ11 and θ22 are positive in region III and they are
negative in region IV. On the right side of the line M? = 0.1, θ11 + θ22 > 0
and θ11 + θ22 < 0 on the left side. (a) For Parameter Set I, (b) for Parameter
Set II, see Table 1.

Applying the Routh-Hurwitz criterion to get conditions when the real parts of the eigenval-
ues of (5.1) have a negative sign leads to two conditions that must be met. The first condition
of the Routh-Hurwitz criterion gives

(5.4) θ11 + θ22 > 0.

The second condition gives the relation

(5.5) p1σ̄
4 + p2σ̄

2 + p3 > 0

where pj , j = 1, 2, 3 depend on Q, M , if the other parameters are fixed . Solving at the
boundary, we obtain

(5.6) σ̄i = ±1
4

θ11 + θ22

(a1 − a2)

√
−4Ω1Ω2θ11θ22 + Q12Q21

Ω1Ω2θ11θ22
, i = 1, 2.
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where the others two roots are always imaginary. To obtain real values of σ̄i we have the
condition 4Ω1Ω2θ11θ22 + Q12Q21 > 0 and either θ11 or θ22 are not negative simultaneously.
In the case both of them are positive, the second condition (5.5) is always satisfied.

Furthermore, we obtain

(5.7) M? =
(β̄V 2 − κ̄2)− κ̄1

κ̄1
< M

that is related to condition (5.4).
Substituting equation (5.6) into (4.1), the interval of stability of the trivial solution is

determined by

(5.8) η◦ + εσ̄2 < η < η◦ + εσ̄1

6. Stability of The Trivial Solution

The parametric excitation is used in the case when self-excited vibrations occur. In the
coupled system the effectiveness depends on conditions of the parameter damping θ11 or θ22.
When both of θ11 and θ22 are positive, this represents the case where the dynamic absorber
successfully cancels the self-excited vibration. This happens in region III in Figure 2 (a) and
Figure 2 (b).

In Figure 2, within the small area IV to the left of line M = M?, both of θ11 and θ22 are
negative. There we have that self-excitation is dominant and full vibration quenching is not
possible at all. The condition (5.4) is satisfied on the right side of the line M = M?.

In Figures 3 and 4 we show the instability boundaries of the trivial solution in the (η,Q)-
plane for fixed M . These figures represent the instability boundary for parameter Set I and
Set II, see Table 1. They show the same characteristic shape of the region of full vibration
suppression. One can recognize an overlap of area that stretches along the combination
resonance η = η◦ + σ and another area that is independent of the parameter excitation
frequency η. Inside the curves we find the trivial solution is stable and unstable outside.
Within the area independent of η, vibration cancellation is not caused by the parametric
excitation, but the stretching of the area along the anti-resonance curve is caused by the
parametric excitation.
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Figure 3. Stability boundaries for Parameter Set I and fixed M = 0.2. (a)
In the (σ̄, Q)-plane, (b) in the (η, Q)-plane. Inside the curves in (a) and (b)
the trivial solution is stable (full vibration suppression) and it is unstable
outside.
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Figure 4. Stability boundaries for Parameter Set II and fixed M = 0.65.
(a) In the (σ̄, Q)-plane, (b) in the (η, Q)-plane. Inside the curves in (a) and
(b) the trivial solution is stable (full vibration suppression) and it is unstable
outside.
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Figure 5. Stability boundaries of the trivial solution in the (η, Q)-plane for
Parameter set I (see Table 1) for fixed values of the parameter and varying ε
and M = 0.2.

Note that the region of full vibration suppression in Figure 3 and Figure 4 depends on the
mass ratio M . The excitation frequency η has a wider range than the frequency ratio Q.
Near the combination resonance η = η◦ or σ = 0, the enlargement is increasing with higher
values of M , but it does not increase proportionally with η.

Figure 5 shows the influence of the amplitude ε of the parametric excitation on the sup-
pressing area. The parameter mainly influences the size of the area near the combination
resonance η = Ω2 − Ω1. The area of suppressing increases with increasing amplitude ε,
indicating that ε is a very effective parameter to obtain a large area of vibration suppression.

We point out that this study of stability of system (4.2) is for the realistic case of mass
ratio M smaller than 1. For a fixed value of M in this interval we obtain the shapes along
the combination resonance and the area as shown in Figure 3 and Figure 4. In the numerical
simulation shown in [8], this area along the combination resonance is splitting up for small
M . In section 9 we explain this analytically by a second order approximation.

7. Bifurcations of the trivial solution

In section 6 we have studied the stability of the trivial solution of system (4.10) for a
fixed value of κ1 = 0.1. We will vary the damping parameter θ11(θ22) by varying κ1 → 0
and fixing the other parameters to study the bifurcations of the trivial solution leading to
periodic solutions and an attracting torus. To study the dynamics of the system near the
trivial solution, it is appropriate to use system (4.10). The equivalent system (4.12) in polar
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coordinates will be used to study the behavior of solutions away from the trivial solution in
section 8.

In Figure 6, we present the parameter diagram in the (κ1, σ̄)-plane for Parameter Set I and
fixed Q = 0.95. The curves σ̄1 and σ̄2 represent Hopf bifurcation curves of the trivial-solution
X◦ of system (4.10). The curves are obtained from equation (5.6). Figure 13 (discussed again
in section 8) illustrates qualitatively the bifurcation diagram of the trivial solution of system
(4.10) in for varying κ1. Fixing σ̄1 = 0.1, we find that the hyperbolic trivial-solution X◦
is stable for κ1 > κ11 and unstable for κ1 < κ11. The stable trivial solution X◦ undergoes
Hopf bifurcation at point H1 then a stable periodic solution X1 emerges. For fixed value κ1

in the interval κ12 < κ1 < κ11 the real parts of the eigenvalues of the trivial solution X◦
which correspond with the vector field (u1, v1), are negative. The other two, corresponding
with the vector field (u2, v2) are negative; they become positive for κ1 < κ12. We have again
Hopf bifurcation at H2 for the value κ1 = κ12 and an unstable periodic solution X2 emerges.
Using the continuation program CONTENT [9], we can indicate the appearance of a stable
periodic solution X1. It becomes unstable at κ1 = κ13 and a stable torus emerges via a
Neimark-Sacker bifurcation. We note that the torus occurs in the interval κ14 < κ1 < κ13,
where κ11 = 0.09936, κ12 = 0.08675, κ13 = 0.06367, and κ14 = 0.0228011. The stability of
the system (4.10) for κ1 < κ14 goes to the periodic solution X2 which becomes stable at that
interval.

We write the amplitudes of the solution of system (4.10) corresponding with the (ui, vi)-

variables as Ri =
√

u2
i + v2

i where i = 1, 2. In section 8 we will discuss more extensively the
periodic solutions Xi, i = 1,2, and also the appearance of the torus.
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Figure 6. The parameter diagram in the (κ1, σ̄)-plane of system (4.10)
for Parameter Set I (see Table 1), M = 0.2 and Q = 0.95 . The curves
σ̄i, i = 1, 2. indicate Hopf bifurcation curves of the trivial solution X◦. The
horizontal line σ̄ = 0.1 is a bifurcation path of the trivial solution. Only
for κ1 > κ11 the trivial solution X◦ is stable. The dashed line indicates the
unstable trivial solution and a full line indicates the stable trivial solution .
Note that κ11 = 0.09936, κ12 = 0.08675, κ13 = 0.06367, and κ14 = 0.0228011.
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Figure 7. Graphical representation of the existence of non-trivial fixed
points of system (4.12) in the (κ1, Q)-plane for Parameter Set I, see Table
1, and for fixed M = 0.2. The number of non-trivial periodic solutions is
indicated by n. Note that κ11 = 0.09936 and κ12 = 0.08675. The horizontal
lines Q = 0.95 relate to Figure 11 and Figure 12.
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8. Dynamics of the full System

Away from the trivial solution the analysis of the amplitude-phase equations (4.12) is
natural and more convenient. Fixed points of this system correspond with periodic solutions
(constant amplitudes R1, R2, and phase-locked: ψ2 − ψ1 constant). A Hopf bifurcation of
such a fixed point produces a periodic solution of system (4.12) and a torus in the original
system. The results are summarized in Figure 10.

8.1. Existence of the Fixed Points. Putting Ṙ1 = 0 and Ṙ2 = 0 in system (4.12), we
find that R2 is a quadratic function of R1; the relation is given by z1 ≡ f(R1, R2) = 0.
From Ṙ1 = 0 and Ψ̇ = 0, we have the relation z2 ≡ g(R1, R2, σ̄) = 0. The curve z1 in the
(R1, R2)-plane intersects the R1-axis or the R2-axis at the origin, at (

√
−4

3
θ11

Ba3
1ω2

1η2◦
, 0), or

(0,
√

4
3

θ22

Ba3
2ω2

2η2◦
) . Since a2 is negative, B and a1 are positive, the curve z1 will intersect both

the R1-axis and the R2-axis at nonzero points iff θ11 < 0 and θ22 < 0. The origin or point
(
√
−4

3
θ11

Ba3
1ω2

1η2◦
, 0) is also an intersection of the curve z2 with those axes. The curve z2 has two

branches parameterized by σ̄ for θ11 < 0, and it has only one branch for θ11 > 0.
The fixed points of system (4.12) are obtained by intersecting z1 and z2, where z1 ∩ z2 = ∅

for σ̄2 < σ̄ < σ̄1 and σ̄2 < 0 and σ̄1 > 0. The explicit expression for σ̄i (i = 1, 2) can be found
from equation (5.6).

Figure 7 shows graphical representations in the (κ1, Q)-plane of the existence of non-trivial
fixed points of system (4.12) for Parameter set I (see Table 1), σ̄ = 0.1 and M = 0.2. System
(4.12) has no non-trivial fixed point in region I. There is only one non-trivial fixed point X1

in region II. The non-trivial fixed points X1 and X2 exist in region III.
We note that θ11 and θ22 always have a different sign in region II. Figure 8 and 9 show

non-trivial fixed points of system (4.12) for each region in Figure 7. For fixed values Q = 0.95
and κ1 = 0.1 in region II, the curve z2 has two branches parameterized by σ̄, see Figure 8.
There is one intersection point between the curve z1 and z2 indicated by point Xi

1. In Figure
7, we fixed Q = 0.8 and κ1 = 0.1 in region II; there is only one branch of the curve z2, in this
case we have θ11 > 0 and θ22 < 0. Figure 9 illustrates the non-trivial fixed points in region
III. For fixed Q = 1 and κ1 = 0.05, there are two branches of the curve z2 parameterized by
σ̄ which intersect the curve z1 at point Xi

1 and point Xi
2.

When we fix Q = 0.95, the boundaries of the existence of the non-trivial solution is shown
in the (κ1, σ̄)-plane, see Figure 10. The curves σ̄i, i = 1, 2. represent the boundaries of the
existence of the non-trivial fixed points X1 and X2, respectively. Note that only in the right
side of the curve σ̄1 the trivial solution is stable. The domains of the region I, II and III are
σ̄1 < σ̄, σ̄1 < σ̄ < σ̄2, and σ̄ < σ̄2, respectively. The curves CH1 and CH2 indicate Hopf
bifurcation curves of the non-trivial fixed points X1 and X2, respectively. These curves are
found by using the continuation program CONTENT [9].

Region III is divided by the curves CHi, i = 1, 2 into regions IIIa to IIIe. The region IIIa
is for CHi < σ̄ < σ̄2, i = 1, 2.. The region IIIb is for CH2 < σ̄ < CH1 or 0 < σ̄ < CH1 . The
region IIIc is for 0 < σ̄ < CLP , region IIId for CLP < σ̄ < CHi, i = 1, 2., and region IIIe for
CH1 < σ̄ < CH2 or 0 < σ̄ < CH2.

In region I of the Figure 10, there is no non-trivial fixed point of system (4.12). The non-
trivial fixed point X1 exists in region II and III. It is only stable in region II and IIIa. The
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non-trivial fixed point X2 exists in the region III. It is stable in the region IIIc, IIId, and IIIe.
The stable non-trivial solution Xi is indicated by X+

i and X−
i for the unstable non-trivial

solution Xi, i = 1,2.
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Figure 8. The non-trivial fixed point of system (4.12), for Parameter Set
I, see Table 1, M = 0.2. (a) For Q = 0.95 and κ1 = 0.1 in region II Figure
7, there is a single fixed point Xi

1 shown by the intersection of two curves z1

and z2 (parameterized by σ̄). (b) For fixed Q = 0.8 and κ1 = 0.1 in region II,
there is a single fixed point Xi

1 shown by the intersection of two curves z1 and
z2 (parameterized by σ̄).
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Figure 9. The non-trivial fixed point of system (4.12), for Parameter Set I,
see Table 1, M = 0.2. For fixed Q = 1 and κ1 = 0.05 in region III, there are
two fixed points Xi

1 and Xi
2 shown by the intersection of two curves z1 and z2

(two branches parameterized by σ̄)
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Figure 10. The parameter diagram of system (4.12) in the (κ1, σ̄)-plane, for
Parameter Set I, see Table 1, M = 0.2 and Q = 0.95. The curves σ̄i, i = 1, 2.
give the boundaries of the existence of the fixed points X1 and X2, respectively.
X+

i indicates a stable non-trivial fixed point Xi and X−
i indicates an unstable

one for i = 1,2. The curves CHi, i = 1.2 indicate Hopf bifurcation curves of
the non-trivial fixed points X1 and X2, respectively. As these fixed points
correspond with periodic solutions, the curves CH1 represent Neimark-Sacker
bifurcation of the original system. The point GH at κ1 = κ∗1 = 0.046897 and
σ̄ = σ̄∗ = 0125067 indicates an interchange point of the supercritical Hopf bi-
furcation and the subcritical Hopf bifurcation of the non-trivial fixed point X2.
Note that for σ̄ > σ̄∗ the bifurcation is subcritical, and it is supercritical for
σ̄ < σ̄∗. The horizontal line σ̄ = 0.1 is an example of a bifurcation path of the
solutions of system 4.12. The curve CLP represents a limit point bifurcation
curve of the periodic solution Ps which appears via a Hopf bifurcation at curve
CH1. Crossing this curve the stable periodic solution Ps vanishes. Note that
σ̄2 = 0.07769, σ̄1 = 0.279403, κ11 = 0.09936, κ12 = 0.08675, κ13 = 0.06367,
and κ14 = 0.0228011.

8.2. Bifurcations: Periodic Solutions and an Attracting Torus. Applying the contin-
uation program CONTENT [9] we obtain the stability diagram of the non-trivial fixed point
X1 of system (4.12) for Parameter Set I (fixed M = 0.2 and Q = 0.95) in the (σ̄, R1) and
(σ̄, R2) planes, see Figure 11. The illustrations are obtained by varying σ̄ along line Q = 0.95,
see Figure 3 (a) in section 6 for the diagram parameter in the (σ̄, Q)-plane. The trivial so-
lution X◦ of system (4.10), corresponding with R1 = 0 and R2 = 0, is stable inside interval
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σ̄2 < σ̄ < σ̄1 and it is unstable outside. The points σ̄ = σ̄1 and σ̄ = σ̄2 are Hopf bifurcation
points of the trivial solution X◦, see also Figure 11. In this case a stable periodic solution
emerges when the trivial solution X◦ looses its stability. This stable periodic solution relates
to the non-trivial fixed point X1 of system (4.12) which exists for σ̄ > σ̄1 or σ̄ < σ̄2. From
equation (5.6) we have σ̄1,2 = ±0.107992 .

0.8

0.85

0.9

0.95

1

1.05

1.1

Q

0 0.1 0.2 0.3 0.4
etaη

Q

η=Ω2−Ω1

-0.7 -0.56 -0.42 -0.28 -0.14 0 0.14 0.28 0.42 0.56 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

s

R2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

s

R2

R

σ

σ12σ

2

X X1 1

(a) (b)

Figure 11. The stable non-trivial fixed point X1 of system (4.12), corre-
sponding with the stable periodic solution X1 of system (4.10), for Parameter
set I, see Table 1, and M = 0.2 and Q = 0.95. (a) in the (σ̄, R1)-plane, (b) in
the (σ̄, R2)-plane. Note σ̄1,2 = ±0.107992
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Figure 12. The stability diagram of the non-trivial solution of system (4.12),
for Parameter Set I (varied parameter κ1, M = 0.2 and Q = 0.95), see Table 1.
(a) in the (κ1, R1)-plane, (b) in the (κ1, R2)-plane. Note that κ11 = 0.09936,
κ12 = 0.08675, κ13 = 0.06367, and κ14 = 0.0228011

As mentioned in section 5, interesting behavior such as the presence of a torus in system
(4.10) happens when we vary the damping parameter κ1 for fixed Q near 1. We show more
completely the parameter diagram in the (κ1, σ̄)-plane in Figure 10. This figure represents
the parameter diagram of system (4.12) for Parameter Set I, M = 0.2, and Q = 0.95. The
curves σ̄1 and σ̄2 are the existence boundaries of the fixed points X1 and X2 of system
(4.12), respectively. The X+

i indicates a stable non-trivial fixed point Xi and X−
i indicates

an unstable one, i = 1,2. The curves CHi, i = 1.2 indicate Hopf bifurcation curves of the
non-trivial fixed points X1 and X2, respectively. The point GH at κ1 = κ∗1 = 0.046897 and
σ̄ = σ̄∗ = 0125067 indicates an interchange point of the supercritical Hopf bifurcation and
the subcritical Hopf bifurcation of the non-trivial fixed point X2. Note that for σ̄ > σ̄∗ the
bifurcation is subcritical, and it is a supercritical for σ̄ < σ̄∗. The horizontal line σ̄ = 0.1 is an
example of bifurcation path of the stability of the solutions of system 4.12. The curve CLP
represents a limit point bifurcation curve of the periodic solutions Ps which appears via a
Hopf bifurcation at curve CH1. Crossing this curve the stable periodic solution Ps vanishes.
Note that σ̄2 = 0.07769, σ̄1 = 0.279403, κ11 = 0.09936, κ12 = 0.08675, κ13 = 0.06367, and
κ14 = 0.0228011.

In our numerical example, we vary the parameter κ1 along line σ̄ = 0.1, see Figure 10
and 13. We find that a hyperbolic non-trivial fixed point X1 is stable in the interval κ13 <
κ1 < κ11. Crossing the curve CH1 at point H1, it becomes unstable and a supercritical Hopf
bifurcation takes place. Figure 12 (a) and (b) show the stability diagram of system (4.12) in
the (κ1, R1)-plane and in the (κ1, R2)-plane, respectively. The non-trivial fixed point X2 is
unstable in region IIIa for κ14 < κ1 < κ12. It becomes stable when crossing the curve CH2

and a supercritical Hopf bifurcation emerges at point H2. A stable periodic solution Ps exists
in the interval κ14 < κ1 < κ13.
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In the full system (4.10), the non trivial fixed points of system (4.12) correspond with their
periodic solutions. The stability diagram of the solutions is illustrated in Figure 13. We
represent them in the κ1-line for σ̄ = 0.1. The curves σ̄i, i = 1, 2. are the Hopf bifurcation
curves of the trivial solution X◦.

We show the trivial solution X◦ is stable for κ1 < κ11 and it undergoes Hopf bifurcation
at κ1 = κ12. The stable periodic solution X1 emerges and changes its stability when it
crosses the curve CH1 at κ1 = κ13, see Figure 10. The curves CHi, i = 1, 2. relate to the
Neimark-Sacker curves of system (4.10). We denote the Neimark-Sacker bifurcation points as
NSi, i = 1.2 which correspond with the Hopf bifurcation points Hi, i = 1, 2. in Figure 10. We
note that for increasing σ̄ from a certain value, the Neimark-Sacker bifurcation of periodic
solution X2 is subcritical. It becomes a supercritical bifurcation when σ̄ is decreased and
tends to zero.

When the stable periodic solution X1 looses its stability then a supercritical Neimark-
Sacker bifurcation NS1 appears at κ1 = κ13. The unstable periodic solution X2 appears
when the trivial solution X◦ is crossing the curve σ̄2. It becomes stable at κ1 = κ14. We find
that a subcritical Neimark-Sacker bifurcation emerges at point NS2 (point H2 in Figure 10)
for κ1 = κ14. A stable torus T, related to the stable periodic solution Ps, takes place for
κ1 < κ13 and it disappears when κ1 reaches κ14. Note that for κ1 < κ14 we also have a stable
periodic solution X2. We find that for κ1 < κ13 the amplitude R1 of the periodic solution X1

is bigger than for the non-trivial solution X2, but the amplitude R2 of the non-trivial X1 is
less than for the periodic solution X2. Both R1 and R2 are increasing when κ1 is decreasing.
Note that R1 → 0 for κ1 → κ?

13 and R2 → 0 for κ1 → κ?
14, see Figure 13.
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Figure 13. The Stability line of the trivial solution X◦, the periodic so-
lutions X1 and X2 and the torus T of the system (4.10) for varying κ1 and
Parameter Set I (see Table 1), M = 0.2, Q = 0.95, and σ̄1 = 0.1. The solid line
indicates a stable solution and dashed line for unstable solution. Numerical
calculation shown that κ?

13 = 0.0484171, κ?
14 = 0.0287773, and κ4?

1 = 0.0280696

.

9. The case M order ε

In applications we usually have to take the absorber mass (and so the mass ratio M) really
small and the question rises whether we can still suppress or at least significantly reduce
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self-excited vibrations in this case. In [8] a numerical simulation is given which does not agree
with the harmonic balance result of the authors. We shall show that this is caused by the
necessity to rescale the parameter M with as a consequence that we have to take into account
second order effects. We rescale M = εM̄ .

In the case the mass ratio M is small; to avoid linear resonance we omit the case Q 6= 1.
There are two possibilities to get a set of natural frequencies of the linearized system (3.7)
without damping, Ω1 and Ω2, which depend on the value of Q, see equation (3.10). The
possibilities are

{
for 1 < Q

Ω1 = 1 and Ω2 = Q
or

{
for 0 < Q < 1
Ω1 = Q and Ω2 = 1

The combination resonance takes place if η◦ = |Ω2 − Ω1|.
To get a standard form (3.7), we use transformation (3.6) where now

{
for 1 < Q

a1 = 0 and a2 = Q2−1
Q2

or

{
for 0 < Q < 1
a1 = Q2−1

Q2 and a2 = 0

After rescaling time by 1
2(a1−a2)η◦2 , to second order (see [10]), the averaged system for the

case 1 < Q is in the form

u̇1 = ε (−κ̄1η◦u1 + (α11 − 2Qσ̄)v1 + Q13v2) + ε2G1(u1, v1, u2, v2, µ),

v̇1 = ε (−(α11 − 2Qσ̄)u1 − κ̄1η◦v1 −Q13u2) + ε2G2(u1, v1, u2, v2, µ),

u̇2 = ε
(−(κ̄2 − β̄V 2)η◦u2 + (α13 − 2σ̄)v2 + Cu2(u2

2 + v2
2)

)
+ ε2G3(u1, v1, u2, v2, µ),

v̇2 = ε
(−(α13 − 2σ̄)u2 − (κ̄2 − β̄V 2)η◦v2 + Cv2(u2

2 + v2
2)

)
+ ε2G4(u1, v1, u2, v2, µ),

(9.1)

where α11 = M̄Q2

a2ω1
, α13 = M̄Q2(1−a2)

a2ω2
, Q13 = (1−a2)Q2

a2
, and C = −3

4Ω2
2Bη◦a2

2 and

G1 = A1u1 + A2v1 + A3u2 + A4v2 + A5u1(u2
2 + v2

2) + A6u2(u2
2 + v2

2)
G2 = −A2u1 + A1v1 −A4u2 + A3v2 + A5v1(u2

2 + v2
2) + A6v2(u2

2 + v2
2)

G3 = B1v1 + B2u2 + B3v2 + B4u2(u2
2 + v2

2) + B5v2(u2
2 + v2

2) + B6v2(u2
2 + v2

2)2

G3 = −B1u1 −B3u2 + B2v2 + B4v2(u2
2 + v2

2)−B5u2(u2
2 + v2

2)−B6u2(u2
2 + v2

2)2

see (A.1) and (A.2) in Appendix A for Ai and Bi for i = 1..6. We note that the system for
the case 0 < Q < 1 is obtained by transformation (3.6), with x̄1 → x̄2 and x̄2 → x̄1. This
implies that system (9.1) is transformed by ui → vi and vi → ui for i = 1, 2 and exchanging
Ω1 and Ω2, and conversely.

We find that to the lowest order in ε the trivial solution of the system (for both cases) is
unstable. The eigenvalues of the trivial solution of system (9.1) are

λ1,2 = −κ̄1η◦ ± (α11 − 2Qσ̄)i

λ3,4 = (β̄V 2 − κ̄2)η◦ ± (α13 − 2σ̄)i



S. Fatimah and F. Verhulst 21

Note that, because of our assumption of the presence of self-excitation, we have β̄V 2 − κ̄2 >
0. Using transformation to polar coordinates (4.11), we reduce system (9.1) to a three-
dimensional system. It is now in the form

Ṙ1 = ε (−κ̄1η◦R1 + Q13R2 sin(ψ)) + ε2Ḡ1(R1, R2, ψ, µ),

Ṙ2 = ε
(−(κ̄2 − β̄V 2)η◦R2 + CR3

2

)
+ ε2Ḡ2(R1, R2, ψ, µ),

ψ̇ = ε (2(1−Q) + σ̄γ1 + Q13R2/R1 cos(ψ)) + ε2Ḡ3(R1, R2, ψ, µ),

(9.2)

where a long but straightforward calculation produces

Ḡ1 = A1R1 + A5R1R
2
2 + A4R2 sin ψ + (A6R

3
2 + A3R2) cos ψ

Ḡ2 = B1R1 sin ψ + B2R2 + B4R
3
2

Ḡ3 = A2 +
A6R

3
2 + A3R2

R1
sin ψ + (

A4R2

R1
− B1R1

R2
) cos ψ

γ1 = α11 + α13 , R1 and R2 are bounded away from zero.

As C is negative, it is easy to see that up to first order in ε, R2 =
√
− (β̄V 2−k̄2)η◦

C corresponds
with an invariant manifold. On this invariant manifold, system (9.2) has a fixed point R◦ =
(R10, R20, ψ0) corresponding with a periodic solution where R10 = Q13R20√

κ̄2
1+(2(1−Q)+σ̄γ1)

, R20 =
√
− (β̄V 2−k̄2)η◦

C , and ψ0 = arccos( (2(Q−1)−σ̄γ1)R10

Q13R20
). Note that Q13 is positive. To study the

stability of this fixed point we check the characteristic equation of the linearization of system
(9.2) at that point up to order ε. The characteristic equation is in the form

λ3 + pλ2 + qλ + r = 0.

We find that all the coefficients of the equation are positive and pq − r > 0, so that the fixed
point R◦ is stable.

Figure 14 shows the maximum amplitude R =
√

R2
x1

+ R2
x2

of the system (3.4) as a function
of time t with the parameter set III for the numerical simulation as listed in Table 2.

Table 2: Parameter values for numerical examples.
Parameter Set III

M 0.12
ε 0.1
κ1 0.1
κ2 0.1
β 0.1
V

√
2.1

γ 4
As C is proportional to η◦, we note that to first order in ε the amplitude R2 is independent
of the parameter value η which means the absorber does not influences the vibration much.
Adding the second order ε terms, we transform

R1 = R10 + εR̄1(9.3)
R2 = R20 + εR̄2(9.4)
ψ = ψ0 + εψ̄(9.5)
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yielding a system of the form
˙̄
1R = ε

(
C1R̄1 + C2R̄2 + C3ψ̄ + K1

)
+ O(ε2)

˙̄
2R = ε

(
C4R̄2 + K2

)
+ O(ε2)

˙̄ψ = ε
(
C5R̄1 + C6R̄2 + C7ψ̄ + K3

)
+ O(ε2)

(9.6)

where Ki, i = 1, 2, 3 are constants depending on R10, R20, and ψ0, and so do the coefficients
Ci, i = 1..7, see A.3 and A.4 in Appendix A. The fixed point of system (9.6) up to the lowest
order of ε is (R̄10 , R̄20 , ψ̄0), where R̄10 , R̄20 , and ψ̄0 are obtained by taking ˙̄

1R = 0, ˙̄
2R = 0

and ˙̄ψ = 0, respectively.
Since R̄20 can be obtained explicitly, the amplitude of variable x2 of system (3.4) can be

given immediately. The expression is

(9.7) Rx2 = |a2|R2

This amplitude will reach the minimum value at

(9.8) σ̄i =
1
3

(±3γ1 −
√

3κ̄1η◦)
2(1−Q)

In Figure 15 we show the maximum amplitude Rx2 of the system (3.4) with respect to
parameter η and Q. (a). For the case 1 < Q and (b). for the case 0 < Q < 1. Figure 16
illustrates the areas where the amplitude Rx2 can be reduced. For Parameter Set III, see
Table 2, we show that inside the curves the amplitude Rx2 is suppressed. Figure 16.(a) is
for the case 1 < Q and Figure 16.(b) for 0 < Q < 1. We show that the minimum value at
η = 0.77607 is 0.441621 for fixed Q = 1.105, see Figure 17.
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Figure 14. The maximum amplitude R =
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of system (3.4) to
first order approximation for parameter Set III (see Table 2) and fixed Q =
1.105.
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Figure 15. The maximum amplitude Rx2 = |a2|R2 of system (3.4) to second
order approximation, for parameter set III (see Table 2). (a). For the case
1 < Q and (b). for the case 0 < Q < 1.
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Figure 17. The maximum amplitude Rx2 of system (3.4) Parameter Set III
(see Table 2) and fixed Q = 1.105. The minimum value can be reached at
η = 0.77607 and Rx2 = 0.441621.

10. Conclusion

We have studied system (3.4), modeling flow-induced vibrations, by using the averaging
method. There are two conditions needed for suppressing self excited vibrations. The first
condition evaluates that the sum of the negative and the positive linear damping components
determine the stability of certain modes and must be positive. The second condition is related
to the parametric excitation frequency and determines, whether full quenching can be achieved
or not in a certain interval. The presented results also demonstrate that a dynamic absorber
with parametric excitation is capable of enlarging the range of full vibration suppression near
the combination resonance frequency.

The dynamics of the averaging system (4.10) is complex and it can be understood by the
parameter diagram shown in Figure 10. By varying the parameter κ1 we find equilibria,
periodic solutions and torus solutions. The emergence of these solutions and their stability is
tied in with Hopf and Neimark-Sacker bifurcations.

For applications the case of a small absorber mass (small M) is important. If M is of order
ε the absorber influences the vibration in second order approximation. In Figure 16, we find
the areas where the vibration is decreased. We can also calculate the minimum value that
can be reached by the maximum amplitude of system (3.4) which shows that a large amount
of quenching is still possible.
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Appendix A. The second order approximation of Averaging System

The expressions for the coefficients of the second order approximation of system (9.1):

A1 = −α11η◦θ12

ω1 + ω2
− θ13η◦ + 2θ11σ̄

A2 = −1
4

(α11 + σ̄α12ω1)2

ω3
1

− 1
4

θ2
11η

2◦
ω1

+
α11α13

ω1(ω1 + ω2)
− 1

2
Q2

11

(4ω2
1 − 1)ω1

− 2
α11σ̄

ω1η◦

A3 = −1
2

η◦ω2Q11θ12

ω1(ω1 + ω2)
− 1

8
η◦

(
θ11Q12

ω2
1

− θ22Q12

ω1ω2

)

A4 = −1
8

Q12α12σ̄

ω2
1

+
1
4

Q12σ̄

ω1ω2
− 1

8
Q12α11

ω3
1

+
1
8

α13Q12

ω1ω2
2

+
1
2

α13Q11

ω1(ω1 + ω2)
+

1
2

α13

ω1
− Q12σ̄

ω1η◦

A5 =
3
2

α11ω
2
2Bη3◦

ω1 + ω2

A6 =
3
32

Q12ω2Bη3◦
ω1

+
3
8

Q11ω
3
2Bη3◦

ω1(ω1 + ω2)

(A.1)
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B1 = −1
2

α11Q11

ω2(ω1 + ω2)
− 1

2
α11

ω2

B2 =
α11θ12η◦
ω1 + ω2

+ 4θ22σ̄ + 2θ14η◦

B3 = −(ω2σ̄ + α13)σ̄
ω2

2

− α11α13

ω2(ω1 + ω2)
− 1

4
θ2
22η

2◦
ω2

− 1
4

α2
13

ω3
2

+ 2
α13σ̄

ω2η◦

B4 = −3
4

α11ω
2
2Bη3◦

ω1 + ω2
− 3

8
(−2ω2σ̄ + α13)Bη3

◦ +
3
4
α13Bη3

◦ + 3ω2
2Bη2

◦σ̄

B5 = −3
8
θ22ω2Bη4

◦

B6 = − 27
128

ω3
2B

2η6
◦

(A.2)

where α12 = −2Q, Q11 = Q2, Q12 = (1 − a2)Q2, θ11 = κ̄1, θ12 = κ̄1(1 − a2) − (κ̄2 − β̄V 2),
θ13 = M̄κ̄1, θ14 = M̄κ̄1(1− a2), and θ22 = κ̄2 − β̄V 2.

The expressions for the coefficients of the second order approximation of system (9.6):

C1 = −κ̄1η◦

C2 =
1

2ω1
Q12 sinψ0

C3 =
1

2ω1
Q12R20 cosψ0

C4 = −9
4
R2

20a
2
2ω

2
2Bη3

◦ − θ22η◦

C5 = −1
2

Q12R20 cosψ0

R2
10ω1

C6 =
1
2

Q12 cosψ0

R10ω1

C7 = −1
2

Q12R20 sinψ0

R10ω1

(A.3)

K1 = (A3R20 + A6R
3
20) cos ψ0 + A4R20 sinψ0 + R10A1 + A5R10R

2
20

K2 = B1R10 sinψ0 + B2R20 + B4R
3
20

K3 =
(

A4R20

R10
− B1R10

R20

)
cosψ0 +

(
A3R20

R10
+

A6R
3
20

R10

)
sinψ0 + A2 −B3 −B5R

2
20 −B6R

4
20

(A.4)


