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Abstract. We consider an autoparametric system which consists of
an oscillator, coupled with a parametrically-excited subsystem. The os-
cillator and the subsystem are in 1 : 1 internal resonance. The excited
subsystem is in 1 : 2 parametric resonance with the external forcing. The
system contains the most general type of cubic nonlinearities. Using the
method of averaging and numerical bifurcation continuation, we study
the dynamics of this system. In particular, we consider the stability of
the semi-trivial solutions, where the oscillator is at rest and the excited
subsystem performs a periodic motion. We find various types of bifur-
cations, leading to non-trivial periodic or quasi-periodic solutions. We
also find numerically sequences of period-doublings, leading to chaotic
solutions.

1. Introduction

An autoparametric system is a vibrating system which consists of at least
two subsystems: the oscillator and the excited subsystem. This system is
governed by differential equations where the equations representing the oscil-
lator are coupled to those representing the excited subsystem in a nonlinear
way and such that the excited subsystem can be at rest while the oscillator
is vibrating. We call this solution the semi-trivial solution. When this semi-
trivial solution becomes unstable, non-trivial solutions can be initiated. For
more backgrounds and references see Svoboda, Tondl, and Verhulst [1] and
Tondl, Ruijgrok, Verhulst, and Nabergoj [2].

We shall consider an autoparametric system where the oscillator is ex-
cited parametrically, of the form:

x′′ + k1x
′ + q2

1x + ap(τ)x + f(x, y) = 0

y′′ + k2y
′ + q2

2y + g(x, y) = 0
(1.1)

The first equation represents the oscillator and the second one is the
excited subsystem. An accent, as in x′, will indicate differentiation with
respect to time τ and x, y ∈ R. k1 and k2 are the damping coefficients,
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2 Bifurcations in an Autoparametric System in 1:1 Internal Resonance

q1 and q2 are the natural frequencies of the undamped, linearized oscillator
and excited subsystem, respectively. The functions f(x, y) and g(x, y), the
coupling terms, are C∞ and g(x, 0) = 0 for all x ∈ R. The damping co-
efficients and the amplitude of forcing a are assumed to be small positive
numbers. We will consider the situation that the oscillator and the external
parametric excitation are in primary 1 : 2 resonance and that there exists
an internal 1 : 1 resonance.

There exist a large number of studies of similar autoparametric systems.
The case of a 1 : 2 internal resonance has been studied by Ruijgrok [3] and
Oueini, Chin, and Nayfeh [4], in the case of parametric excitation. In Ruij-
grok [3] the averaged system is analyzed mathematically, and an application
to a rotor system is given. In Oueni, Chin, and Nayfeh [4] theoretical re-
sults are compared with the outcomes of a mechanical experiment. Tien,
Namachchivaya, and Bajaj [5] also consider the situation that there exists
a 1 : 2 internal resonance, now however with external excitation.

In Tien, Namachchivaya, and Bajaj [5] and in Bajaj, Chang and John-
son [6] the bifurcations of the averaged system are studied, and the authors
show the existence of chaotic solutions, numerically in Bajaj, Chang, and
Johnson [6] and by using an extension of the Melnikov method in Tien,
Namachchivaya, and Bajaj [5], for the case with no damping. In Baner-
jee and Bajaj [7], similar methods as in Tien, Namachchivaya, and Bajaj
[5] are used, but now for general types of excitation, including parametric
excitation.

The case of a 1 : 1 internal resonance has received less attention. In
Tien, Namachchivaya, and Malhotra [8] this resonance case is studied, in
combination with external excitation. The author shows analytically that
for certain values of the parameters, a Šilnikov bifurcation can occur, lead-
ing to chaotic solutions. In Feng and Sethna [9] parametric excitation was
considered, and also here a generalization of the Melnikov method was used
to show the existence of chaos in the undamped case.

In this paper we study the behavior of the semi-trivial solution of system
(1.1). This is done by using the method of averaging. It is found that several
semi-trivial solutions can co-exist. These semi-trivial solutions come in pairs,
connected by a mirror-symmetry. However, only one of these (pairs of) semi-
trivial solutions is potentially stable. In section 4 we study the stability of
this particular solution, the results of which are summarized in 3-dimensional
stability diagrams. In section 5 the bifurcations of the semi-trivial solution
are analyzed. These bifurcations lead to non-trivial solutions, such as stable
periodic and quasi-periodic orbits. In section 6 we show that one of the
non-trivial solutions undergoes a series of period-doublings, leading to a
strange attractor. The chaotic nature of this attractor is demonstrated by
calculating the associated Lyapunov exponents.

Finally, we mention that in the averaged system we encounter a codi-
mension 2 bifurcation. The study of this rather complicated bifurcation will
be described in a separate paper, where we also use a method similar to
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the one used in Tien, Namachchivaya, Malhotra [8] to show analytically the
existence of Šilnikov bifurcations in this system.

2. The averaged system

We will take f(x, y) = c1xy2 + 4
3x3, g(x, y) = 4

3y3 + c2x
2y, and p(τ) =

cos 2τ . Let q2
1 = 1+εσ1 and q2

2 = 1+εσ2, where σ1 and σ2 are the detunings
from exact resonance. After rescaling k1 = εk̃1, k2 = εk̃2, a = εã, x =

√
εx̃,

and y =
√

εỹ, then dropping the tildes, we have the system:

x′′ + x + ε(k1x
′ + σ1x + a cos 2τx +

4
3
x3 + c1y

2x) = 0

y′′ + y + ε(k2y
′ + σ2y + c2x

2y +
4
3
y3) = 0

(2.1)

It is possible to start with a more general expression for f(x, y) and g(x, y),
for instance including quadratic terms. We have limited ourselves to the
lowest-order resonant terms, which in this case are of third order, and which
can be put in this particular form by a suitable scaling of the x, y, and τ -
coordinates. This is not a restriction, as a more general form for the coupling
terms leads to the same averaged system and normal forms.

The system (2.1) is invariant under (x, y) → (x,−y), (x, y) → (−x, y), and
(x, y) → (−x,−y). In particular the first symmetry will be important in the
analysis of this system. We emphasize that these symmetries do not depend
on our particular choice for f(x, y) and g(x, y), but are a consequence of the
1:2 and 1:1 resonances and the restriction that we have an autoparametric
system, i.e. that g(x, 0) = 0 for all x ∈ R.

We will use the method of averaging (see Sanders and Verhulst [10] for
appropriate theorems ) to investigate the stability of solutions of system
(2.1), by introducing the transformation:

x = u1 cos τ + v1 sin τ ; x′ = −u1 sin τ + v1 cos τ(2.2)
y = u2 cos τ + v2 sin τ ; y′ = −u2 sin τ + v2 cos τ(2.3)

After substituting (2.2) and (2.3) into (2.1), averaging over τ , and rescaling
τ = ε

2 τ̃ , we have the following averaged system:

u′1 = −k1u1 + (σ1 − 1
2
a)v1 + v1(u2

1 + v2
1) +

1
4
c1u

2
2v1 +

3
4
c1v

2
2v1 +

1
2
c1u2v2u1

v′1 = −k1v1 − (σ1 +
1
2
a)u1 − u1(u2

1 + v2
1)−

3
4
c1u

2
2u1 − 1

4
c1v

2
2u1 − 1

2
c1u2v2v1

u′2 = −k2u2 + σ2v2 + v2(u2
2 + v2

2) +
1
4
c2u

2
1v2 +

3
4
c2v

2
1v2 +

1
2
c2u1v1u2

v′2 = −k2v2 − σ2u2 − u2(u2
2 + v2

2)−
3
4
c2u

2
1u2 − 1

4
c2v

2
1u2 − 1

2
c2u1v1v2

(2.4)
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3. The semi-trivial solution

In this section we investigate the semi-trivial solutions of system (2.4)
and determine their stability. From section 1, the semi-trivial solutions cor-
respond to u2 = v2 = 0, so that we have:

u′1 = −k1u1 + (σ1 − 1
2
a)v1 + v1(u2

1 + v2
1)

v′1 = −k1v1 − (σ1 +
1
2
a)u1 − u1(u2

1 + v2
1)

(3.1)

Apart from (0, 0), the fixed points of system (3.1) correspond with periodic
solutions of system (2.1). The non-trivial fixed points are

(u◦, v◦)=


 R◦(σ1 − 1

2a + R2◦)√
(σ1− 1

2a+R2◦)2+k2
1

,
R◦k1√

(σ1− 1
2a+R2◦)2+k2

1


 and

(u◦, v◦)=


− R◦(σ1 − 1

2a + R2◦)√
(σ1− 1

2a+R2◦)2+k2
1

,− R◦k1√
(σ1− 1

2a+R2◦)2+k2
1




(3.2)

where

(3.3) R2
◦ = −σ1 ±

√
1
4
a2 − k2

1 and R2
◦ = u2

◦ + v2
◦

Assuming R◦ 6= 0, there are three cases, depending on the value of a and σ1

(1) If a > 2
√

σ2
1 + k2

1, there is one solution for R2◦
(2) If σ1 < 0 and 2k1 < a < 2

√
σ2

1 + k2
1, there are two solutions for R2◦

(3) For a < 2k1, there is no solution for R2◦.

These results are summarized in Figure 1, we show that the regions I,
II, and III, respectively, corespond to the above conditions 1, 2, and 3 re-
spectively . The phase-portraits of system (3.1) in the (u1, v1)-plane for a
specific value (σ1, a) in these regions are indicated in Figure 2. Note that
the fixed-points come in pairs and are symmetric with respect to (0, 0).
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Figure 1. The parameter diagram of system (3.1) in the
(σ1, a)-plane

Figure 2. The phase-portraits of system (3.1) in the
(u1, v1)-plane for specific values (σ1, a) in region I, II, and
III, respectively.

4. Stability of the semi-trivial solution

In this section we will study the stability of the semi-trivial solution de-
pending on the values of the forcing amplitude a and the detunings σ1, σ2

in system (2.1). From section 3, we find that the semi-trivial solution cor-
responding to R2◦ with the plus sign is always stable (as a solution of (3.1)),
therefore we will only study this semi-trivial solution and ignore the unstable
semi-trivial solutions.
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Write the averaged system (2.4) in the form:

(4.1) X′ = F (X)

where X =




u1

v1

u2

v2


 and

(4.2)
∂F

∂X
=

(
A11 A12

A21 A22

)

where A11, A12, A21, and A22 are 2 × 2 matrices depending on u1, v1, u2

and v2. At the solution (±u◦,±v◦, 0, 0), corresponding to the semi-trivial
solution of system (4.1), we have ∂F

∂X = AX with
(4.3)

A=




−k1+2u◦v◦ σ1− 1
2a+2v2

◦+R2
◦ 0 0

−σ1− 1
2a−2u2

◦−R2
◦ −k1−2u◦v◦ 0 0

0 0 −k2+ 1
2c2u◦v◦ σ2+ 1

4c2u
2
◦+

3
4c2v

2
◦

0 0 −σ2− 1
4c2v

2
◦− 3

4c2u
2
◦ −k2− 1

2c2u◦v◦




u◦ and v◦ satisfy (3.4) and R2◦ satisfies (3.6). Let

A =
(

A11 0
0 A22

)

To get the stability boundary of system (4.1), we solve detA = detA11detA22 =
0. From the equation detA22 = 0, we have:

(4.4) σ2 = −1
2
c2R

2
◦ ±

√
1
16

c2
2R

4◦ − k2
2 where R2

◦ ≥ 4
k2

c2

Because R2◦ is a function of σ1 and a, equation (4.4) now gives a relation
between σ1, σ2, and a. Graphically, this corresponds to a surface in the
3-dimensional parameter space (σ1, a, σ2). This surface is shown in Figure
3 for fixed values of k1, k2, c1, c2 > 0 and in Figure 4 for fixed values of k1,
k2, c1 > 0 and c2 < 0.

In figure 5 we show the stability boundary in the (σ1, σ2)-plane for a fixed
value of a > 2k1. Inside the curve the semi-trivial solution is unstable,
outside it is stable. In these numeric calculations we fixed k1 = 1, k2 = 1
and c1 = 1. We took c2 = 1, for the case c2 > 0 and c2 = −1 for the case
c2 < 0.
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Figure 3. The parameter-space of system (4.1) in the
(a, σ1, σ2)-space for c2 > 0.

Figure 4. The parameter-space of system (4.1) in the
(a, σ1, σ2)-space for c2 < 0.
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(a) (b)

Figure 5. The parameter diagram of system (4.1) in the
(σ1, σ2)-plane for fixed a = 10.20. In figure (a) for c2 > 0
and in figure (b) for c2 < 0.

(a) (b)
Figure 6. The stability diagram of the response of system
(4.1), (a) against the detuning σ1 for fixed a = 10.2 and
σ2 = −5.3 and (b) against the forcing a for fixed σ1 = −4
and σ2 = −5.3. A solid line means that the semi-trivial
solution is stable and the dashed line that it is unstable.

In Figure 6 (a) we show the response of R2
1 = u2

1 + v2
1 for fixed a and σ2,

note that R◦ = R1. We find that between the branch points L and M the
semi-trivial solution is unstable. In Figure 6 (b) we show the response R◦ for
fixed σ1 and σ2. We have indicated that the semi-trivial solution is unstable
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between the branch points N and O , and between the branch points P and
Q. Figure 6 does not depend on the sign of c2. We have similar figures for
the case c2 > 0, σ2 < 0 and for the case c2 < 0, σ2 > 0.

5. Bifurcations of the semi-trivial solution

On the stability boundary shown in Figure 3, the semi-trivial solution
undergoes a pitchfork bifurcation. We have used the bifurcation continua-
tion program CONTENT (Kuznetsov [11]) to study the non-trivial solutions
branching from these bifurcation points. We find that the results depend
on the values of c1 and c2. For positive values of c1 and c2, the results are
summarized in Figure 7.

Figure 7. The parameter diagram of system (4.1) in the
(σ1, σ2) plane for c2 > 0.

We have fixed a > 2k1 for values (σ1, σ2) in Region I, where the semi-
trivial solution is stable. Crossing the boundary from Region I into Region II
it becomes unstable and an attracting non-trivial solution is born. Crossing
the boundary from Region II into III the semi-trivial solution becomes stable
and a small, unstable non-trivial solution appears. Crossing the boundary
from Region III into region IV the stable and unstable non-trivial solutions
collide and disappear in a saddle-node bifurcation.
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Figure 8. The bifurcation diagram of the semi-trivial so-
lution in the (σ2, u2)-plane for c2 > 0.

Figure 9. The parameter diagram of system (4.1) in the
(a, σ2)-plane, for c2 > 0.

In Figure 8 we fix a = 10.20 and σ1 = −4 (see Figure 7) and show the
u2 component of the non-trivial solution as σ2 is varied. We have indicated
the bifurcation points A, B, and C corresponding to Figure 7. There is an
interval for σ2 where two stable solutions coexist and on the boundaries of
this interval hysteresis jumps occur.
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It is possible to make similar diagrams in the (a, σ2)-plane, keeping σ1

fixed. Again we find similar bifurcations, see Figure 9. Note that the points
A, B correspond to the branching points in Figure 8, and C corresponds to
a saddle-node bifurcation.

(a) (b)
Figure 10. The stability diagram of the non-trivial so-
lution R together with the response R◦ of the semi-trivial
solution for c2 > 0, (a) against the detuning σ1 for fixed
a = 10.2 and σ2 = −5.3 and (b) against the forcing a for
fixed σ1 = −4 and σ2 = −5.3.

In Figure 10 (a) we show the amplitude of the non-trivial solution R =√
u2

1 + v2
1 + u2

2 + v2
2, together with the amplitude of the semi-trivial solution

for fixed a and σ2 (see Figure 6(a)). We find two non-trivial solutions in
certain interval of σ1. One is stable and another is unstable. We also show
that between points L’ and M the non-trivial solution is stable and there
exists an unstable non-trivial solution between points L and L’. In Figure
10(b) we show the amplitude R, together with the amplitude of the semi-
trivial solution R◦ for fixed σ1 and σ2 (see Figure 6 (b)). The non-trivial
solution is stable between points P’ and Q and there exists an unstable
non-trivial solution between points P and P’.

For negative values of c2 we find different phenomena in the behavior
of solutions of system (4.1). On the stability boundary shown in Figure 4
, the semi-trivial solution undergoes a pitchfork bifurcation but then the
non-trivial solutions which branches from this bifurcation point undergoes a
Hopf bifurcation. Again we have used CONTENT to study the non-trivial
solution branching from these bifurcation points. The results are illustrated
in Figure 11.
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Figure 11. The parameter diagram of system (4.1) in the
(σ1, σ2)-plane for c2 < 0 and fixed a = 10.20.

We have fixed a > 2k1 for values (σ1, σ2) in region I. In this region the
semi-trivial solution is stable. Crossing the boundary from Region I into
Region II it becomes unstable and a stable non-trivial solution appears.
Crossing the boundary from Region II into III the non-trivial solution be-
comes unstable. A supercritical Hopf bifurcation occurs at the boundary
between Region II and III. Crossing the boundary from Region III into IV
the semi-trivial solution becomes stable and another small unstable non-
trivial solution appears. Crossing the boundary from Region IV into V the
unstable non-trivial solution changes its stability and again it undergoes a
supercritical Hopf bifurcation. Finally, crossing the boundary V into VI the
stable and unstable non-trivial solution collide and disappear in a saddle-
node bifurcation.

In Figure 12 we fix a = 10.2 and σ1 = −6 (see Figure 11) and show the
v2 component of the non-trivial solution as σ2 is varied. We have indicated
the bifurcation points A, B, C, D, and E corresponding to Figure 11. The
points A and C indicate the branching points of the semi-trivial solution.
The points B and D indicate Hopf bifurcation points and E a saddle-node
bifurcation point. Again there is an interval for σ2 where two stable solutions
coexist and on the boundaries of this interval hysteresis jumps occur.
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As we discussed in the case c2 > 0, for c2 < 0 we find similar bifurcations
in the (a, σ2)-plane (see Figure 13), keeping σ1 fixed. The points A, B, C,
D, and E on the curves correspond to the bifurcation points in Figure 12.

Figure 12. The stability diagram of system (4.1) in the
(σ2, v2)-plane for c2 < 0.

Figure 13. The parameter diagram of system (4.1) in the
(a, σ2)-plane for c2 < 0
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We note that the amplitude of the non-trivial solution of system (4.1) is
R =

√
u2

1 + v2
1 + u2

2 + v2
2. In Figure 6 (a) we have depicted the amplitude of

the semi-trivial solution R◦ against σ1 for fixed a and σ2. In Figure 14 (a),
we show both the amplitude of the non-trivial solution R and the amplitude
of semi-trivial solution R◦. When σ1 is varied, we find there is an interval
of σ1 consisting of the unstable semi-trivial solution and the stable non-
trivial solution. There is also interval of σ1 where the semi-trivial solution
is stable together with the stable non-trivial solution and the unstable non-
trivial solution. In Figure 14 (b) we show the amplitude R, together with
the amplitude R◦ against a for fixed σ1 and σ2. Again the same behavior of
solutions of system (4.1) occurs, when a is varied.

(a) (b)
Figure 14. The stability diagram of the non-trivial solu-
tion R together with the semi-trivial solution for c2 < 0, (a)
against the detuning σ1 for fixed a = 10.2 and σ2 = 5.3 and
(b) against the forcing a for fixed σ1 = −4 and σ2 = 5.3.

6. Period Doubling Bifurcations and Chaotic Solutions

We now consider the case that c1 > 0 and c2 < 0. Not only does the
system exhibit Hopf bifurcations, but we also observe a sequence of period-
doublings, leading to a strange attractor.

In previous sections we have choosen a fixed value of a not too close to the
stability boundary given by a = 2k1. This was done because when a is in the
neighbourhood of 2k1, complications can arise, since then also det A11 = 0,
and we can have double-zero eigenvalues. This problem can be studied
analytically by considering a codimension 2 bifurcation; this will be carried
out in a separate paper. As a first result from this bifurcation analysis
we mention the occurence of global bifurcations, involving heteroclinic and
homoclinic loops. We also find a homoclinic solution of Šilnikov type. It
is well-known (see Kuznetsov [11] and Wiggins [12]) that the existence of
such a homoclinic loop is conected with chaotic solutions. We therefore
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conjecture that the chaotic solutions we find numerically are the result of
the Šilnikov phenomenon.

In the numeric calculations, presented in this section interesting behavior
of solutions of system (4.1) occurs near the stability boundary.

Figure 15. The parameter diagram of system (4.1) in the
(a, σ2)-plane for c2 < 0 close to the stability boundary.

Figure 16. The stability diagram of system (4.1) in the
(σ2, v2)-plane for c2 < 0 close to the stability boundary.
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(a)

(b)

(c)

(d)
Figure 17. The sequence of period doubling bifurcations.
The phase-portraits in the (u1, v1)-plane and (u2, v2)-plane
for (a) σ2 = 5.42, (b) σ2 = 5.4, (c) σ2 = 5.344, and (d)
σ2 = 5.341
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In Figure 15 we fixed σ1 < 4k2
c2

, a close to 2k1 and c2 < 0 (a = 2.1,
σ1 = −8, and c2 = −1). The bifurcations of the semi-trivial solution are
similar to the case where a is taken far away from the stability boundary
(compare Figure 12 and Figure 16).

In Figure 16, the semi-trivial solution branches at point A, and then
at point C. When the semi-trivial solution branches at point A, a stable
non-trivial solution bifurcates and then this non-trivial solution undergoes a
Hopf bifurcation at point B. We point out that a fixed point and a periodic
solution in the averaged system correspond to a periodic and quasi-periodic
solution, respectively, in the original, time dependent system. A supercrit-
ical Hopf bifurcation occurs at point B for σ2 = 5.5371 and at point D
for σ2 = −8.051. Again, a saddle-node bifurcation occurs at point E for
σ2 = −8.0797.We find a stable periodic orbit for all values of σ2 in the inter-
val 5.4119 < σ2 < 5.5371. As σ2 is decreased, period doubling of the stable
periodic solution is observed, see Figure17. There is an infinite number of
such period doubling bifurcations, until the value σ∗2 = 5.2505 is reached.
The values of σ2 with σ∗2 < σ2 < 5.3195 produce a strange attractor.

Figure 18. The strange attractor of the averaged system
(2.5). The phase-portraits in the (u2, v2, u1)-space for c2 < 0
at the value σ2 = 5.3.

To know whether the strange attractor is chaotic or not, we have cal-
culated the Lyapunov exponents of system (4.1). Any system containing
at least one positive Lyapunov exponent is defined to be chaotic, with the



18 Bifurcations in an Autoparametric System in 1:1 Internal Resonance

magnitude of the exponent reflecting the time scale on which system become
unpredictable (Wolf, Swift, Swinney, and Vastano [13]).

We find that the Lyapunov spectra of system (4.1) corresponding to pa-
rameter values above are λ1 = 0.8411, λ2 = −0.3864, λ3 = −0.1596, and
λ4 = −0.2858, so that the orbits displayed in Figure 18 are chaotic. We have
found that for other values of c1 > 0, c2 < 0, k1 and k2 the same type of sce-
nario occurs i.e. periodic solutions which after a series of periodic-doublings
lead to a strange attractor with one positive and three negative Lyapunov
exponents.

The Lyapunov spectrum is closely related to the fractal dimension of the
associated strange attractor. We find that the Kaplan-Yorke dimension of
the strange attractor for σ2 = 5.3 is 2.29.

7. Conclusion

An autoparametric system of the form (1.1), with the conditions stated in
equation (2.1), has at most five semi-trivial solutions, which come in pairs
and are symmetric with respect to (0, 0). We have studied one semi-trivial
solution, which is stable as a solution of (3.1), and considered its stability
in the full system. The dependence of the stability of this solution on the
forcing and the detunings is pictured in Figure 3 and 4. We find that there
can exist at most one stable non-trivial periodic solution. By studying the
bifurcations from the semi-trivial solution, we also find in some cases Hopf
bifurcations, leading to quasi-periodic solutions. Also, we have observed
cascades of period-doublings, leading to chaotic solutions. The fact that
these chaotic solutions arise in the averaged system implies that chaotic
dynamics is a prominent feature in the original system.
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