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We consider  an autoparametric system, which consists of  an oscillator, coupled  with  parametrically-excited 
subsystem. The oscillator and the subsystem are in 1:1 internal resonance. The excited subsystem is in 1:2 resonance 
with the external  forcing.  The method of averaging is used to yield a set  of  autonomous equation of  the 
approximation to the response of  the system.  We find  various types of  bifurcation,  leading  to non-trivial  periodic or 
quasi-periodic solutions.  Using  numerical bifurcation continuation ,  we found sequences of  period-doublings,  
leading to chaotic solutions.  To analyze the parameter  range for which a Shilnikov type homoclinic orbit exists, we 
used global  perturbation  technique  developed by Kovacic and Wiggins [1].  This orbit  gives  rise  to a well-
described chaotic dynamics.  The    theoretical  results are found to be in a good agreement with the results obtained by 
simulation. 
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INTRODUCTION 
 
An autoparametric system is a vibrating system, which consists of at least two subsystems: the oscillator 
and the excited subsystem. The oscillator is coupled to the excited subsystem  in  a nonlinear way,  but  
such  that  the excited subsystem can be at rest while the oscillator is vibrating. We call  this state the semi-
trivial solution.  In  physics it is called a normal mode.The classical example of an autoparametric system is 
the elastic pendulum,  which consists of a spring fixed at one end. The spring  may swing in a plane like a 
pendulum and oscillate at the same time.  Until recently,  research in an autoparametric system was 
concerned mainly with the system consisting of a vibrating single mass with an attached pendulum (Figure 
1).   
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FIGURE 1. An autoparametric system consisting of a mass mount on a spring (the oscillator) and of a pendulum 
attached to the mass (the excited subsystem).  
 
In the literature up till 1992,  the excitation of the oscillator was considered to be external. In [2], It is 
shown that not only external excitation but also parametric or self-excitation of  the oscillator can be the 
source of autoparametric excitation (see [3] and [4] for more backgrounds). In studying an autoparametric 
system,  the determination of stability and instability conditions of the semi-trivial solution or normal mode 
is always the first step.  After that we look for other periodic solutions, bifurcation and chaotic solutions. In 
this paper we shall consider an autoparametric system where the oscillator is excited parametrically with 
1:2 resonance and that there exists an internal 1:1 resonance.  The coupling  of  the oscillator and the 
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excited subsystem are in cubic nonlinearities. Using numerical simulation and mathematical analysis,  we  
will concern on study the chaotic solutions, which arise in this system.   
 

THE AVERAGED SYSTEMS 
 

We consider an autoparametric system of the form: 
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The first equation represents the oscillator and the second one is the excited subsystem. An accent, as in , 
will indicate differentiation with respect to time  and  .  The damping coefficients  and   

are in order one, so are the amplitude of  forcing  a  and the coefficient of couplings c1 and c2. The and 

 are the detunings from exact resonance.  Transform system (1) using   the transformation  
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and averaging over  then rescaling τ τ
ετ
2

=    will  lead to system in the form 

TvuvuXXFX )   (   where),(' 2211==                              (2) 
see [5] for details. In the sequel a different formulation of system (2) will often be used transformation to 
action-angle variables 

.2,1    ,sin 2   and  ,cos 2 ==−= iiiRiviiRiu θθ  
yields system of the form 

TRRYYGY )   (   where),(' 2211 θθ==                              (3) 
The semi-trivial solution is found by taking . Note that the system (1) is invariant under 

, , and . In particular the first symmetry will be 
important in the analysis of this system. 
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PERIODIC DOUBLING BIFURCATIONS AND CHAOTIC SOLUTION 

 
On the stability boundary of the semi-trivial solution in system (2),  it is easy to find an analytical condition 
when  the semi-trivial solution can undergo a pitchfork bifurcation. We have used the bifurcation  
 
 
 
 
 
 
 
 
 
 
 
FIGURE 2. The stability diagram of system (2) in the -plane for fixed values 
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 Solid  curves mean that solutions are stable and the dashed line  that it is unstable. Continuation program 
CONTENT (Kutznetsov [6]) is used to study the non-trivial solutions branching from these bifurcation 
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points.  In Figure 2,  the semi-trivial solution branches at point A,  a stable non-trivial solution bifurcates 
and then this non-trivial solution undergoes a Hopf  bifurcation at point B. We point out that a fixed point 
and a periodic solution of system (2) correspond to a periodic and quasi-periodic solution,  respectively, in 
the original , time dependent system. A supercritical Hopf bifurcation occurs at point B for 

and at point D for .  A saddle-node bifurcation occurs at point E  for5327.52 =σ 051.82 =σ 0797.32 =σ

2σ

2σ

. 

We find a stable periodic orbit for all values of  in the interval 5.4119 <  <5.5371. As  is 
decreased, period doubling of the stable periodic solution is observed. There is an infinite number of such 
period  doubling, until the value =5.2505 is reached. The values of  with 5.2505 < <5.3195 
produce a strange attractor (Figure 3). We find that the Lyapunov spectra of system (2) corresponding to 
parameter values above are 

2σ 2σ

2σ 2σ

2858.0  and  ,1596.0 ,3864.0  ,8411.0 4321 −=−=−== λλλλ . Since this system contain one positive 
Lyapunov  exponent,  we conclude that the strange attractor is chaotic,  with the magnitude of the exponent 
reflecting the time scale on which system become unpredictable (Wolf, Swift, Swinney, and Vastano [7]). 
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FIGURE 3.  The strange attractor of the averaged system (2).  The phas
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ANALYTICAL STUDY OF CHAOTIC SOLUTION B

MELNIKOV METHOD 
 

By using a generalized version of  Melnikov’s  method ,  we find  that
the averaged system (3) has a homoclinic orbit of Shilnikov-type. T
system in which the unperturbed problem is an integrable Ham
hyperbolic invariant set whose stable and unstable manifold int
geometry associated with the integrable structure is used to develop
determining if any of the homoclinic orbits to the normally hip
perturbation. To prove this involves an application of higher dimensi
Kovacic and Wiggins (1992).  A rather technical analysis shows t
system (3), which implies chaotic dynamics, also for the original syste
In Figure 3, we show the area in parameter-plane where a Shilnikov 
and L4. In that figure, we have also indicated the lines where the sem
trivial solution (lines L1 and L5), and where the Hopf–bifurcation of 
These last curves are found from previous analysis by a suitable rescal
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correspond to high degree with the numerical results obtained earlier. For example, for parameter-values 
. we numerically found a strange attractor for 5.2505< 

 <5.3195, whereas the values as predicted by the curves L

812121   and  ,1.2   ,1  ,1 −==−==== σκκ acc

2σ 3 and L4 yields 5.26< <5.33. 2σ
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 4. Parameter diagram of system (3) in  the -plane for values   ),( 21 σσ .1.2   ,1  ,1 2121 =−==== accκκ
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