MATA KULIAH

METODE RUNTUN WAKTU

Oleh:

Entit Puspita

Nip 132086616

JURUSAN PENDIDIKAN MATEMATIKA
FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS PENDIDIKAN INDONESIA
2007

BEBERAPA KONSEP DASAR DALAM ANALISIS RUNTUN WAKTU

DEFINISI: RUNTUN WAKTU ADALAH SUSUSNAN OBSERVASI
BERURUT MENURUT WAKTU(ATAU DIMENSI YANG LAIN)

DILIHAT DARI JENIS DATA RUNTUN WAKTU DIBAGI MENJADI:

- a. RUNTUN WAKTU DISKRIT
- b. RUNTUN WAKTU KONTINU

DILIHAT DARI POLANYA RUNTUN WAKTU DIBAGI MENJADI:

- a. DETERMINISTIK
- b. STOKASTIK

KONSEP STASIONERITAS

Himpunan data runtun waktu Z_1 , Z_2 , ..., Z_n yang di anggap sebagai realisasi VR Z_t , diasumsikan mempunyai fkp bersama $f(Z_1, Z_2, ..., Z_n)$. Jika struktur probabilistik fkp tidak berubah oleh adanya perubahan waktu maka runtun waktu tersebut disebut stasioner

Pada proses stasioner kita mempunyai:

- $E(Z_t) = \mu \text{ dan kov } (Z_t, Z_{t-k}) = \gamma_k$
- μ adalah mean prose dan γk autokovariansi lag ke k
- Nilai μ dan γ_k adalah konstan untuk berbagai lag k

Himpunan $\{\gamma_k : k = 0, 1, 2, ..., \}$ dinamakan **fungsi autokovariansi**

FUNGSI AUTOKORELASI

Autokorelasi pada lag k didefinisikan:

$$\rho_{k} = \frac{kov(Z_{t}, Z_{t-k})}{[var(Z_{t}).var(Z_{t-k})]^{1/2}} = \frac{\gamma_{k}}{\gamma_{0}}$$

Himpunan $\{\rho_k : k = 0, 1, 2, 3 ... \}$, dengan $\rho_0 = 1$ disebut dengan **Fungsi Autokorelasi** (Fak)

Untuk proses normal dan stasioner , Rumus Bartlett menyatakan (dengan menganggap pk =0) bahwa :

$$var(r_k) \approx \frac{1}{N} (1 + 2\sum_{i=1}^{k} r_i^2)$$

Nilai ini digunakan untuk menguji keberartian nilai Fak, yaitu jika $|r_k| < 2 \text{ SE}(r_k)$ maka r_k tidak berbeda secara signifikan dengan 0.

FUNGSI AUTOKORELASI PARSIAL

Alat lain yang digunakan dalam Analisis Runtun Waktu adalah Fungsi autokorelasi Parsial (Fakp), yang ditulis dengan $\{\Phi_{kk}: k=1, 2, 3, ...\}$

$$\phi_{kk} = \frac{\left| \widetilde{P}_{k}^{*} \right|}{\left| \widetilde{P}_{k} \right|} \quad \widetilde{P}_{k} = \begin{bmatrix} 1 & \rho_{1} & \rho_{2} & \rho_{k-1} \\ \rho_{1} & 1 & \rho_{1} & \rho_{k-2} \\ \rho_{2} & \rho_{1} & 1 & \rho_{k-3} \\ \vdots & \vdots & \vdots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \vdots & 1 \end{bmatrix}$$

 $|P_k^*|$ adalah $|P_k|$ (matrik autokorelasi runtun waktu sebanyak k) dengan kolom terakhir diganti oleh $[\rho_1 \ \rho_2 \ ... \ \rho_k]'$

Untuk lag yang cukup besar Quenouille memberikan rumus untuk menguji keberartian nilai Fakp, yaitu:

$$Var (\Phi_{kk}) = 1/N$$

Entit Puspita

METODE BOX-JENKINS

Dalam Metode Box-Jenkins untuk Analisis Runtun waktu digunakan Dua Operator yaitu:

- a. Operator Backshift B, dengan definsi $BZ_t = Z_{t-1}$
- b. Operator Diferensi, dengan definisi $\nabla Z_t = Z_t Z_{t-1} = (1 B)Z_t$

Model linier yang Sering Digunalan dalam Aanlisis Runtun Waktu:

$$\Phi(B) Zt = \theta(B) at \tag{1}$$

Φ dan θ adalah polinomial, $\{a_t\}$ adalah proses **white noise** ditulis $a_t \sim N(0; \sigma_a^2)$

Persamaan (1) dapat juga ditulis dalam bentuk:

$$Z_t = \Psi(B) a_t$$
, dengan $\Psi(B) = 1 + \Psi_1 B + \Psi_2 B^2 + ...$

FILTER LINIER / FUNGSI TRANSFER

Bentuk $Z_t = \Psi(B)$ a_t , dapat diilustrasikan sebagai:

Ini berarti bahwa RW Z_t dapat diperoleh dengan melewatkan proses white noise a_t melalui filter linier dengan fungsi transfer

Ψ(B) = 1 + Ψ1B + Ψ2B2 + ... Jika barisan Ψ1, Ψ2 ...berhingga atau takberhingga tapi konvergen maka filter disebut stabil, dan runtun waktu yang dihasilkan dikatakan stasioner

Model dalam (1) dapat juga ditulis:

$$\Pi(B) Z_t = a_t$$
, dengan $\Pi(B) = 1 - \Pi_1 B$, $\Pi_2 B^2$,

п(В) disebut fungsi pembentuk koefisien п

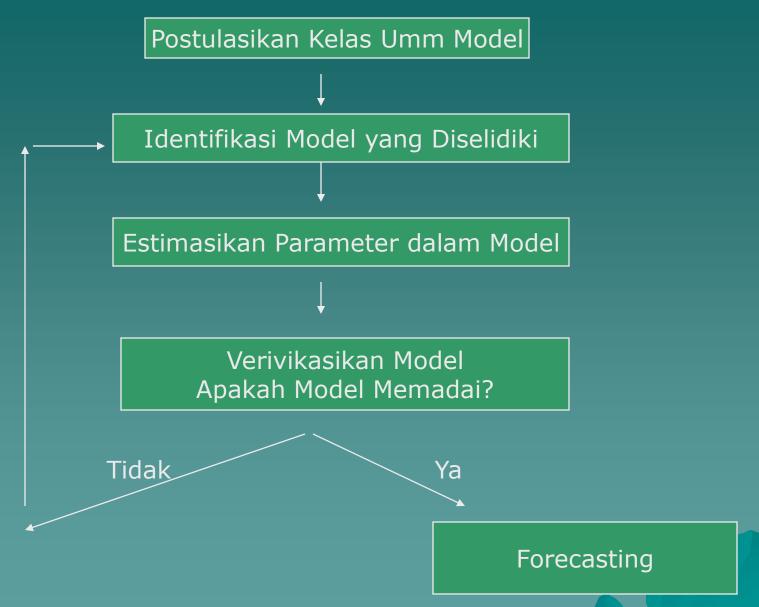
Hubungan antara koefisien Ψ dan π :

$$Ψ(B)$$
 . $Π(B)$ $Z_t = Ψ(B)$ $a_t = Z_t$
Atau $Ψ(B)$. $Π(B) = 1$ atau $Ψ(B) = Π-1 (B)$

Hubungan tersebut dapat digunakan untuk menurunkan koefisien $\,\Pi\,$ apabila koefisien $\,\Psi\,$ diketahui atau sebaliknya

Supaya runtun waktu pada bentuk $\pi(B)$ Zt = a_t stasioner, maka deret $\Psi(B)$ yang merupakan fungsi pembentuk koefisien Ψ haruslah konvergen untuk $|B| \le 1$ dan dikatakan invertibel apabila koefisien π_j pada deret $\pi(B)$ konvergen pada atau didalam lingkaran satuan.

LANGKAH-LANGKAH ITERATIF DALAM MEMILIH MODEL



PROSES AUTOREGRESIVE (AR)

Bentuk umum Proses AR orde p (AR(p))

$$Z_{t} = \phi_{1}Z_{t-1} + \phi_{2}Z_{t-2} + ... + \phi_{p}Z_{t-p} + a_{t}$$

Atau dapat ditulis

$$\Phi(B) Z_t = a_t$$

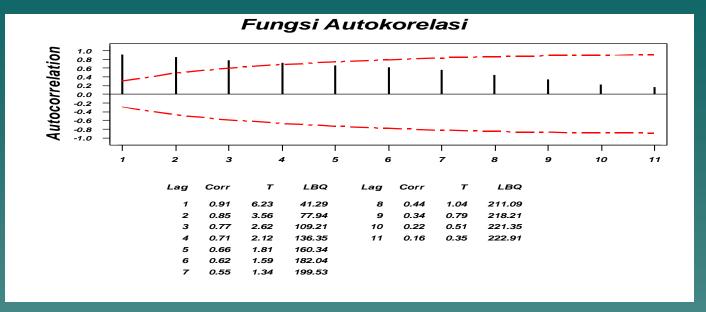
Dengan $\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \phi_p B^p$ disebut operator AR(P)

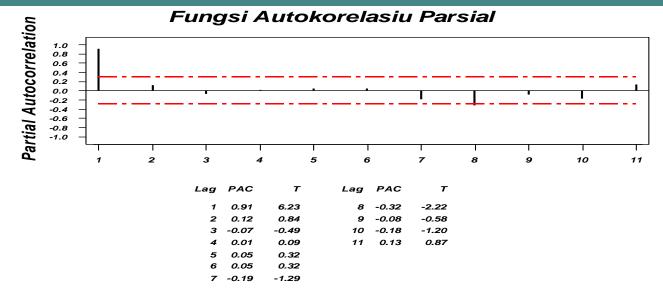
Pandang proses AR(1), $Z_t = \phi Z_{t-1} + a_t$

Ciri-ciri teoritik proses A(1)

- a. Daerah stasioneritas $-1 < \phi < 1$
- b. Mean proses adalah nol
- c. Fungsi autokorelasi turun secara eksponensial $\rho_k = \phi_k$, $k \ge 1$
- d. Fungsi Autokorelasi Parsial terputus setelah lag ke 1

Contoh fak dan fakp proses AR(1)





PROSES MOVING AVERAGE (MA(q))

Bentuk umum proses MA(q) adalah:

$$Z_{t} = a_{t} + \theta_{1}a_{t-1} + ... + \theta_{q}a_{t-q}$$
, dengan $a_{t} \sim N(0, \sigma_{a}^{2})$ (1)
= $\theta(B) a_{t}$

Dengan $\theta(B) = (1 + \theta_1 B + ... + \theta_q B^q)$ adalah operator MA(q)

Persamaan (1) dapat juga ditulis:

$$\theta^{-1}(B) Z_t = Z_t - \pi_1 Z_{t-1} - \pi_2 Z_{t-2} - \dots = a_t$$

Atau $\pi(B) Z_t = a_t$

Proses MA(q) dikatakan invertibel, jika koefisien π merupakan deret yang konvergen

PROSES MOVING AVERAGE ORDE 1 MA(1)

Bentuk umum : $Z_t = a_t + \theta_1 a_{t-1}$

Dengan at adalah proses white noise

Ciri – ciri proses MA(1) adalah:

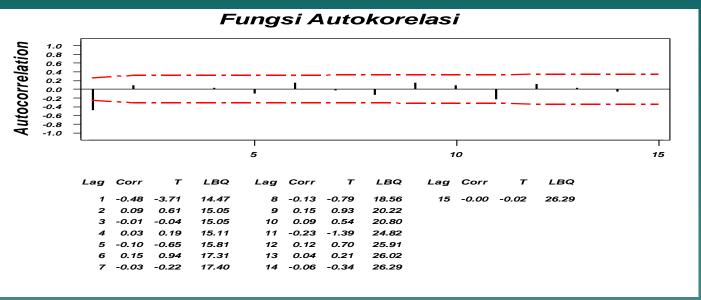
- a. Mean = 0
- b. fak adalah:

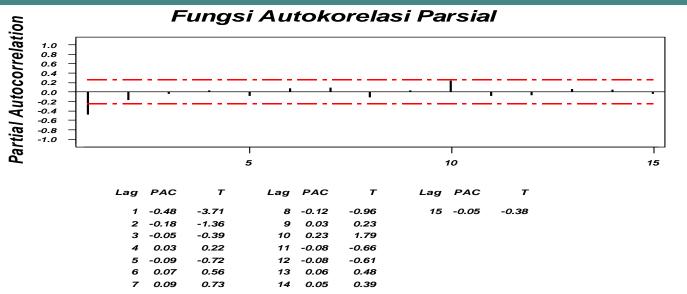
$$\rho_{1} = \frac{\theta}{1 + \theta^{2}} \quad \text{Dan } \rho_{k} = 0, k > 1$$

c. Fakp adalah:

$$\phi_{kk} = \frac{(-1)^{k-1}\theta^k (1-\theta^2)}{1-\theta^{2(k+1)}}$$

Contoh Fak dan Fakp Proses MA(1)





PROSES CAMPURAN (ARMA(p,q))

Bentuk umum:

$$Z_{t} = \phi_{1}Z_{t-1} + ... + \phi_{p}Z_{t-p} + a_{t} + \theta_{1}a_{t-1} + ... + \theta_{q}a_{t-q}$$

Dapat juga ditulis : $\phi(B)$ $Z_t = \theta(B)$ a_t , syarat stasioneritas dan invertibilitas adalah akar-akar $\phi(B) = 0$ dan $\theta(B) = 0$ terletak di luar lingkaran satuan.

Model ARMA dapat juga ditulis $Z_t = \Psi(B)$ atau $\pi(B) Z_t = a_t$

Dimana $\Psi(B) = \phi^{-1}(B) \theta(B)$ dan $\pi(B) = \theta^{-1}(B) \phi(B)$ adalah deret takhingga dalam B. Sehingga dengan menyatakan model ARMA dalam bentuk AR saja atau MA saja kita akan mengharapkan fakp yang kurang terus menerus.

MODEL ARMA (1,1)

- \bullet Bentuk umum : $(1-\phi B)Z_t = (1 + \theta B)a_t$
- Syarat Stasioner dan invertibel :
- ◆ -1 < φ < 1 dan -1 < θ < 1.
- Untuk semua k berlaku:

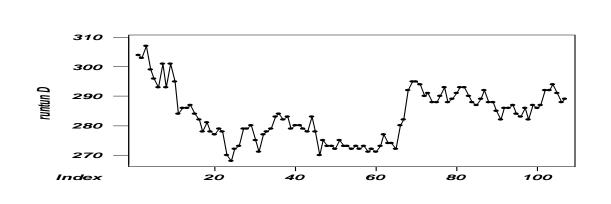
```
\begin{aligned} \gamma_k &= \varphi \gamma_{k-1} + \gamma_{az}(k) + \theta \ \gamma_{az}(k-1) \\ \text{Sehingga} \\ \gamma_0 &= \varphi \gamma_1 + \sigma_a^2 + \theta \ \gamma_{az}(-1) \\ \gamma_1 &= \varphi \gamma_0 + \theta \ \sigma_a^2 \\ \text{Dan} \\ \gamma_0 &= \varphi \gamma_{k-1}, \ \text{untuk} \ k > 1 \end{aligned}
```

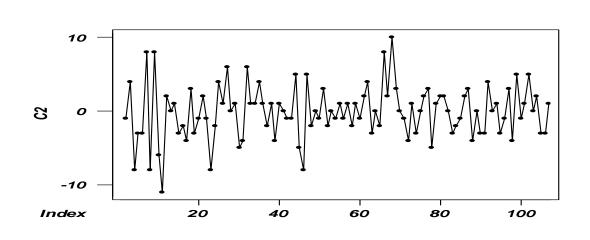
RUNTUN WAKTU NONSTASIONER

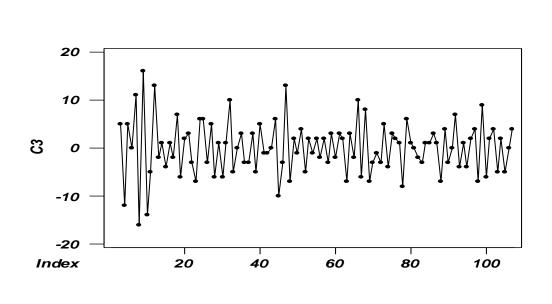
- Penyebab : tidak memiliki mean yang tetap
- Sifat nonstasioner tersebut bersifat homogen
- RW nonstasioner homogen ditunjuk -kan oleh RW selisih nilai-nilai yang berurutan adalah stasioner
- Jenis Nonstasioner:
 - Nonstasioner dalam tingkat, dengan model $\phi(B) \nabla Z_t = \theta(B) a_t$
 - Nonstasioner dalam tingkat dan lerengan dengan model $\phi(B) \nabla^2 Zt = \theta(B) a_t$

Jika kita tulis $\nabla^d Zt = W_t$, maka proses ARIMA (p,d,q) untuk $\{Z_t\}$ merupakan proses ARMA(p,q) untuk $\{W_t\}$ sehingga teori untuk runtun waktu stasioner yang telah dibicarakan berlaku pula untuk runtun waktu W_t .

Contoh Plot data RW Non Stasioner





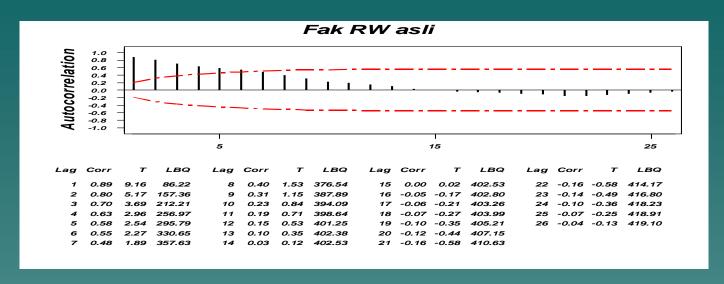


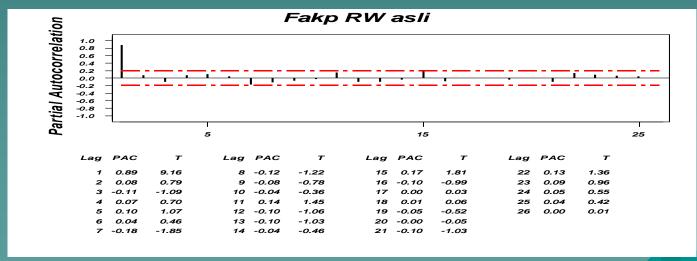
Gambar c

Keterangan gambar:

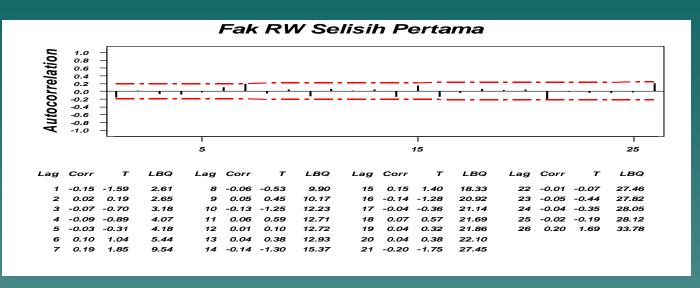
- a. Plot data RW asli (nonsationer- ditunjukkan oleh adanya trend)
- b. Plot data selisih pertama (sudah stasioner)
- c. Plot data selisih kedua (stasioner dengan variansi yang lebih besar dari selisih pertama), artinya cukup dilakukan selisih pertama untuk membuatnya stasioner

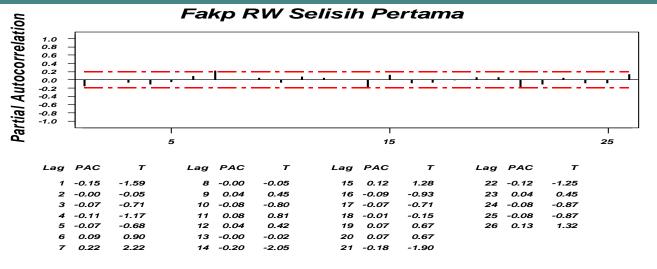
Fak dan Fakp RW Nonstasioner(Data Asli)





Fak dan Fakp RW Selisih Pertama





Fak dan Fakp RW Selisih Ke-dua

