3. FUNGSI DAN GRAFIKNYA

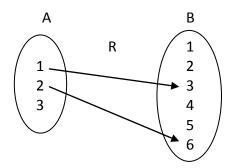
3.1 Pengertian Relasi

Misalkan A dan B suatu himpunan. Jika anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu **relasi** dari A ke B.

Contoh:

$$A = \{1, 2, 3\} \text{ dan } B = \{1, 2, 3, 4, 5, 6\}$$

Misalkan relasi dari A ke B adalah relasi "sepertiga dari", maka relasi tersebut dapat digambarkan dalam diagram berikut ;



Himpunan pasangan berurutan (a, b) dengan $a \in A$ dan $b \in B$ disebut himpunan perkalian A dan B atau produk kartesius A dan B ditulis dengan notasi A x B dan dinyatakan dalam notasi himpunan sbb;

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

Contoh:

Misalkan A = $\{1, 2, 3\}$ dan B = $\{4, 5\}$

Maka A x B = $\{(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)\}$

3.2 Pengertian Fungsi

Suatu fungsi atau pemetaan f dari himpunan A ke himpunan B adalah suatu relasi khusus yang memasangkan setiap anggota A dengan tepat satu anggota B, ditulis ;

$$f: A \rightarrow B$$

Dalam hal ini A disebut domain (daerah asal) dan B disebut kodomain (daerah kawan). Jika f memetakan satu $x \in A$ ke satu $y \in B$, maka dikatakan bahwa "y adalah peta dari x oleh f" ditulis dengan notasi ; $f: x \to y$ atau $f: x \to f(x)$. Himpunan $y \in B$ yang merupakan peta dari $x \in A$ disebut range atau daerah hasil.

Contoh

Tentukan domain, kodomain dan range dari pemetaan berikut;

 $f: A \to B$ dengan f(x) = 2x, x bilangan asli A = {2, 3, 4}, B = {4, 5, 6, 7, 8}

3.3 Macam-macam Fungsi

a. Fungsi satu-satu/ fungsi into/ fungsi injektif

 $f: A \to B$ disebut fungsi satu-satu jika setiap anggota A mempunyai bayangan yang berbeda, dengan kata lain tidak ada dua anggota A yang mempunyai bayangan yang sama didalam B. Jadi jika $f(a_1) = f(a_2)$ maka $a_1 = a_2$ atau jika $a_1 \neq a_2$ maka $a_2 \neq a_3$ maka $a_3 \neq a_4$ maka $a_4 \neq a_5$ maka $a_5 \neq a_6$ maka $a_5 \neq a_6$

Contoh

- 1. Jika $f: \mathbb{R} \to \mathbb{R}$ dengan $f(x) = x^2$, apakah f fungsi satu-satu?
- 2. Jika $f: \mathbb{R} \to \mathbb{R}$ dengan $f(x) = x^3$, apakah f fungsi satu-satu?
- b. Fungsi pada/ fungsi onto/ fungsi surjektif

Misalkan $f: A \to B$ maka range $f(A) \subseteq B$. Jika f(A) = B, yaitu setiap $y \in B$ ada $x \in A$ sehingga f(x) = y, maka f disebut fungsi pada/ surjektif dari A ke B.

Contoh

- 1. Jika $f: A \to B$ dengan $f(x) = x^2$, x bilangan real, $A = B = \{x : -1 \le x \le 1\}$, apakah f fungsi surjektif?
- 2. Jika $f: A \to B$ dengan $f(x) = x^3$, x bilangan real, $A = B = \{x : -1 \le x \le 1\}$, apakah f fungsi surjektif?
- c. Fungsi Konstan

Misalkan $f: A \to B$. Fungsi f disebut fungsi konstan jika setiap anggota A dipetakan ke satu anggota B yang sama. Jadi jika $x \in A$, maka f(x) = c (c konstan).

Contoh

Jika f(x) = 2, x bilangan real, maka f merupakan fungsi konstan.

d. Fungsi Satuan/ Fungsi Identitas

 $f: A \to A$ dengan f(x) = x disebut fungsi satuan jika f memetakan setiap titik anggota A ke dirinya sendiri.

e. Fungsi kuadrat/ fungsi parabola

 $f: A \to B$ dengan $f(x) = ax^2 + bx + c$, dan $a, b, c \in R$ disebut fungsi kuadrat.

f. Fungsi ganjil dan fungsi genap

Suatu fungsi f disebut fungsi ganjil jika f(-x) = -f(x)untuk semua x. Grafiknya simetris terhadap titik asal yaitu titik (0,0).

Dan fungsi f disebut fungsi genap jika f(-x) = f(x)untuk semua x. Grafiknya simetris terhadap sumbu y.

Contoh

Nyatakan fungsi berikut apakah fungsi ganjil, genap atau tidak keduanya

- f(x) = 2x + 1
- $g(x) = 3x^2 + 2x 1$
- $h(x) = \frac{x}{x^2 1}$

g. Fungsi Mutlak

Fungsi mutlak dari x didefinisikan

$$f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Bagaimana sketsa dari fungsi $f(x) = \left| \frac{1}{2}x - 1 \right|$

h. Fungsi Tangga

Fungsi tangga dari f didefinisikan sbb;

f(x) = [x] =bilangan bulat terbesar yang lebih kecil atau sama dengan x.

Coba sketsa grafik fungsi tersebut!

Bagaimana pula sketsa dari fungsi $(x) = \left[\frac{1}{2}x + 1\right]$?

i. Fungsi Trigonometri

Secara umum fungsi trigonometri dapat ditulis dengan

$$y = \sin f(x)$$
, $y = \cos f(x)$, $y = \tan f(x)$ dsb.

Fungsi trigonometri yang paling sederhana adalah $y = \sin x$, $y = \cos x$, $y = \tan x$ dsb.

Bagaimana bentuk grafiknya?

Bagaimana grafik dari = $\sin 2x$?

j. Fungsi eksponen

a pangkat n yang ditulis a^n disebut bentuk eksponensial atau perpangkatan, dengan a disebut basis atau bilangan pokok dan n disebut eksponen atau pangkat.

Jika n bilangan bulat positif, maka

$$a^n = \underbrace{a \times a \times a \times \dots \times a}_{\text{n faktor}}$$

Secara umum fungsi eksponensial didefinisikan sbb;

$$a^x = e^{x \ln a}$$
, dengan $a > 0$ dan $x \in \mathbb{R}$

e adalah bilangan Euler dengan $e \approx 2,718281828459045$

Sifat-sifat Eksponen

Jika a > 0, b > 0, dan x dan y bilangan real, maka

- (i) $a^x a^y = a^{x+y}$
- (ii) $\frac{a^x}{a^y} = a^{x-y}$
- (iii) $(a^x)^y = a^{xy}$
- (iv) $(ab)^x = a^x b^x$
- $(v) \qquad \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$

Contoh

Sketsa grafik fungsi $y = 2^x$, kemudian bandingkan dengan fungsi $y = x^2$.

k. Fungsi Logaritma

Jika a > 0, $a \ne 1$ dan c > 0 maka diperoleh hubungan

$$a^b = c \iff \log_a c = b$$

Dengan a disebut basis atau bilangan pokok logaritma dan c disebut nilai yang dilogaritmakan. Jika basis logaritma adalah 10, maka basis tersebut biasanya tidak ditulis, misalnya $\log_{10} 2 = \log 2$

Contoh

Sketsa grafik fungsi $y = \log x \operatorname{dan} y = \ln x$

3.4 Operasi pada Fungsi

Jika f dan g suatu fungsi maka didefinisikan jumlah, selisih, kali dan bagi sbb;

$$(f+g)(x) = f(x) + g(x)$$
$$(f-g)(x) = f(x) - g(x)$$
$$(fg)(x) = f(x)g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
, asalkan $g(x) \neq 0$ untuk setiap x

Dan daerah asalnya merupakan irisan dari masing-masing fungsi f dan g.

Contoh

Jika $f(x) = \sqrt{x^2 - 1} \, \text{dan } g(x) = \frac{2}{x} \, \text{tentukanlah } f + g, \, f - g, \, fg, \, f/g \, \, \text{dan tentukan}$ pula masing-masing daerah asalnya.

3.5 Komposisi Fungsi

a. Pengertian

Jika fungsi f bekerja pada x untuk menghasilkan f(x) dan kemudian g bekerja pada f(x) untuk menghasilkan g(f(x)),maka dikatakan bahwa kita telah mengkomposisikan g dengan f. Fungsi yang dihasilkan disebut komposisi g dengan f, yang dinyatakan dengan $g \circ f$. Jadi

$$(g^{\circ}f)(x) = g(f(x))$$

Jadi, jika $f: \mathsf{A} \to \mathsf{B}$ dan $g: \mathsf{B} \to \mathsf{C}$ maka $(g \circ f): \mathsf{A} \to \mathsf{C}$ dengan syarat $\mathsf{R}_{\underline{f}} \cap \mathsf{D}_g \neq \emptyset$

b. Contoh

Jika $f(x) = x^2 - 1$ dan $g(x) = \sqrt{x}$, $x \in R$, tentukan $(g^{\circ}f)(x)$ dan $(f^{\circ}g)(x)$ serta tentukan masing-masing daerah asalnya.

3.6 Invers Fungsi

a. Syarat fungsi invers

Secara umum, jika $f: A \to B$ maka **invers fungsi** f dinyatakan dengan $f^{-1}: B \to A$. Jika y = f(x) maka $x = f^{-1}(y)$.

Agar suatu fungsi f mempunyai invers maka

- fungsi tersebut harus bijektif, yaitu fungsi tersebut harus injektif dan surjektif atau
- fungsi tersebut harus monoton kuat dan surjektif.

Untuk melihat fungsi monoton kuat atau tidak bisa dilakukan dengan uji turunan pertama, yaitu jika f' > 0 maka f monoton naik kuat dan jika f' < 0 maka f monoton turun kuat.

b. Contoh

Tentukan invers fungsi dari fungsi berikut (Jika ada):

(i)
$$f(x) = 3x + 9$$

(ii)
$$f(x) = x^2 + 2x + 1$$

(iii)
$$f(x) = x^3 + 8$$

c. Invers fungsi trigonometri

Untuk memperoleh invers fungsi sinus, cosinus, tangen dsb. kita harus membatasi domain dari fungsi tersebut, yaitu ;

Jika $y = \sin x$ maka domainnya adalah $[-\pi/2, \pi/2]$ dan diperoleh

$$y = \sin x \Leftrightarrow x = \sin^{-1} y$$

Jika $y = \cos x$ maka domainnya adalah [0, π] dan diperoleh

$$y = \cos x \Leftrightarrow x = \cos^{-1} y$$

Jika $y = \tan x$ maka domainnya adalah $(-\pi/2, \pi/2)$ dan diperoleh

$$y = \tan x \Leftrightarrow x = tan^{-1} y$$

Contoh

Hitunglah

(i)
$$sin^{-1}\left(\frac{1}{2}\sqrt{2}\right)$$

(ii)
$$cos^{-1}\left(-\frac{1}{2}\right)$$

(iii)
$$\cos(\cos^{-1} 0.6)$$

(iv)
$$tan^{-1}(1)$$

d. Invers fungsi komposisi

Sudah kita maklumi bahwa, jika $f: \mathsf{A} \to \mathsf{B}$ dan $g: \mathsf{B} \to \mathsf{C}$ maka $h = (g \circ f): \mathsf{A} \to \mathsf{C}$ dengan

syarat
$$R_{\underline{f}} \cap D_g \neq \emptyset$$

Invers fungsi h adalah $h^{-1}=(f^{-1}\circ g^{-1}):C\to A$

Jadi jika
$$h(x) = (g \circ f)(x)$$
 maka $h^{-1}(x) = (g \circ f)^{-1}(x) = (f^{-1} \circ g^{-1})(x)$

Contoh

Jika
$$f(x) = \frac{3x-1}{2x+1} \, dan \, g(x) = x+2 \, tentukan (g \circ f)^{-1}$$

Soal-Soal

- 1. Tentukan x dari persamaan $5^{2x-3} = 4$
- 2. Bagaimana hubungan antara $\log_{\frac{1}{2}} x$ dan $\log_2 x$
- 3. Jika $f(x) = \sqrt{x^2 4} \, \text{dan} \, (x) = |x + 1|$, tentukan $(g^{\circ}f)(x) \, \text{dan} \, (f^{\circ}g)(x)$ serta tentukan masing-masing daerah asalnya.
- 4. Tentukan nilai dari

$$\cos\left[2\sin^{-1}\left(-\frac{2}{3}\right)\right]$$

5. Jika $f(x) = \frac{1}{x} \operatorname{dan} g(x) = 2x - 1 \operatorname{tentukan} (f \circ g)^{-1}(x)$

Selamat bekerja