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Summary 

        In this paper we discuss some properties of panharmonic functions those are  

similar to harmonic functions. In particular there are generalisations of harmonic 

functions, Liouville’s theorem, and convergence in the mean theorem. By using Green’s 

Identity, the uniqueness theorem is shown to produce another generalised harmonic 

function.   

Abstrak 

 Tulisan ini membahas beberapa sifat fungsi panharmonik sebagai hasil 

generalisasi dari sifat fungsi harmonik. Beberapa sifat fungsi panharmonik diperoleh 

dengan memanfaatkan sifat korespondensi satu-satu antara kelas fungsi panharmonik 

di bidang dengan sub kelas fungsi harmonik di ruang. Selain itu Ketunggalan fungsi 

panharmonik dijelaskan dengan memanfaatkan identitas Green. 

 

1. Introduction 

In this paper we establish some results relating to the solutions of the Yukawa 

equation, i.e.:                                                                                

                         u
u

x

u

y
u

2 2

                                                      (1)2 2

2 ,  

 is a positive constant. A  C
2
-solution of (1) in a domain   

2
 is called 

panharmonic. Equation (1) arose out  of an attempt by the Japanese physicist Hideki 

Yukawa to describe  nuclear potential of a point charge as e
- r 

/r. The resulting potential 

distribution  satisfies the 3-dimensional version of  equation (1). A comprehensive 
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Yukawan potential theory has subsequently  developed by Duffin [1], J. L. Schiff & 

W.J. Walker [2], to which we refer to the reader. 

This paper will  inform many other properties of  real panharmonic functions. 

Many of properties will be proved by using correspondence properties between 

panharmonics functions in two space with a subclass of harmonic functions in three 

space. Further, we will show that solution of equation (1) depends on the boundary 

value. It is said  that some of properties in harmonic function is also satisfied by 

panharmonic functions. 

In this paper, the function u is said to be panharmonic in a closed domain , if it 

is panharmonic in the interior and continuous on the boundary of (= ). Moreover, 

we assume that  is a compact region in 
2
  and u

2
 is integrable on . 

 

2. Properties of Panharmonic Functions 

 Panharmonic functions in two spaces are in one to one correspondence with a 

subclass of harmonic functions in three spaces. Thus given that u(x,y) is panharmonic, 

this correspondence is defined by the mapping 

                                            v(x,y,z) = cos z u(x,y).                                                 (2) 

So, 
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therefore v is a harmonic function. 

Conversely , if v(x,y) is a harmonic function, then    

                                                U(x,y,z)=v(x,y)cosh z                                              (4) 

is a panharmonic function, because                                                            
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U.                                  (5)  

 The virtue of this correspondence is that panharmonic functions may inherit 

many of the well-known properties of harmonic functions. 
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Theorem 1  

If u(x,y) is panharmonic non positive in  and if for a constant M < 0, 

              u(x,y)  M  at boundary points of ,    (6) 

then u(x,y) > M at interior points of .      (7) 

Proof 

Consider  the cylindrical region H of three space, defined as (x,y)   and  

                                                       
2 2

z .                                                      (8)  

 

Let’s first define V(x,y,z) = u(x,y)cos z on H. It is clear that V is a harmonic function, 

on the top and on the bottom of this cylinder the corresponding harmonic function V 

vanishes. On the sides of cylinder  -V(x,y,z)   - M.  Because V is a harmonic function, 

it also -V. Thus by the maximum principle for harmonic functions, it follows that at 

interior points of the cylinder H,  -V(x,y,z) < - M.                           (9) 

Unless, the possibly of -V is constant. But if V is constant, then V=0, because V 

vanishes on the top and bottom of this cylinder. Thus (9) is always true. Then V(x,y,0) = 

u(x,y), so if (x,y) is an interior point of , then we see that (7) follows from (9), and the 

proof is complete.  

 

Example 

Let u(x,y)=cosh( (x+y)/ 2) in the circular disk x y a2 2 2 .  It is clear that u is a 

positive panharmonic function on the disk. We can see that the maximum of u occurs 

on the boundary, but the minimum of u occurs on the straight line x+y=0. Thus, in 

general, the maximum principle for harmonic functions is not hold in the panharmonic 

functions. 

 

Theorem 2 

Let u1, u2, u3, … be an infinite sequences of  panharmonic functions in  , and 

convergent in the mean square in . Then the sequence converges uniformly in any 

closed region ’ interior to , to a panharmonic limiting function. 

Proof 
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Let u1, u2, u3, … be an infinite sequences of  panharmonic functions in , and 

convergent in the mean square in  to u. Consider  the cylindrical region H of three 

space, defined as (x,y)   and  z , and the cylindrical region H’ of three 

space, defined as (x,y)  ’   and  
2 2

z .  Let us define  

Vn(x,y,z)=un(x,y)cos z on cylinder H. 

Vn is convergent in the mean square in H to u(x,y)cos z, because 

u x y z u x y z dV u x y u x y z dV

u x y u x y dV

n n

HH

n

H

( , )cos ( , )cos ( , ) ( , ) cos

( , ) ( , ) .

2 2 2

2

                                                             
 

By applying theorem ([2],p.268), we obtain the sequence is uniformly convergent in H’. 

Then, putting z = 0, gives un is uniformly convergent in ’. 

 

Theorem 3 

If (um) is a sequence of panharmonic functions on an open set   that is uniformly 

bounded on each compact subset of , then some subsequence of  (um) converges 

uniformly on each compact subset of . 

Proof 

Suppose ’   is compact. Construct the cylindrical domain H of three space, defined 

as (x,y)   and  z , and the cylindrical region H’ of three space, defined as 

(x,y)  ’ and  
2 2

z . Let us define  Vm(x,y,z)=um(x,y)cos z on cylinder H.  

Then V x y z u x y z u x y Mm m m( , , ) ( , )cos ( , ) , for some positives real number M. 

Clearly Vm is a sequence of harmonic functions on H  that is uniformly bounded on  

each compact subset of H. By the theorem ([4], p.35), the some subsequence of (Vm) 

converges uniformly on compact subset H’ in H . Say that (Vmn)  converges uniformly  

to V. Putting z=0, we obtain Vmn(x,y,0)=umn(x,y) uniform converges to V(x,y,0)  on ’. 
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Theorem 4 

A bounded panharmonic function on 
2
  vanishes. 

Proof 

Suppose u(x,y) is a panharmonic function on 
2
, bounded by M.   

Define V(x,y,z) = u(x,y)cos z on 
3
. Clearly V is a harmonic function on 

3 
and 

bounded by M. By the Liouville theorem’s (see [4], p.31), V is a constant function. But 

for z= /2  and (x,y) any points on 
2
, V = 0. Therefore, V must  vanish for any point 

on 
3
. Thus, for any (x,y) on 

2
 and z = 0, then V(x,y,0)=u(x,y)=0. We conclude that  u 

is a vanishes function on 
2
. 

 The next result shows that a continuous function on upper half-space that is 

bounded and panharmonic on an open half space is determined by its boundary values. 

 

Corollary  1 

Let H2 = {(x,y)  
2 

 : y>0}.  Supposed u(x,y) is a continuous bounded function on H2  

that is panharmonic on H2. If u=0 on H2, then u  0 on H2 . 

Proof 

Define V(x,y,z) = u(x,y)cos z, z  R . Clearly V is a harmonic function on subset of 
3 
, 

where x, z in  and y > 0, and V(x,0,z) = 0. By the corollary ([4], p. 32), putting z = 0, 

then we obtain V(x,y,0)=u(x,y)=0, for any points (x,y) on 
2
, where y > 0. Thus,  

u(x,y)= 0, for any points on H2 . 

Next, the following theorems are consequences of the first and second Green 

identity. Let  be a bounded domain with boundary  and let n denote the unit 

outward normal to . Let u and v be C
2
( ) functions. We obtain Green’s first Identity 

: 

                                     v udV u vdV v
u

n
dS. .  

Interchanging u and v above and subtracting the first equation from the second, we 

obtain Green’s Second Identity : 

                                  ( ) ( ) .v u u v dV v
u

n
u

v

n
dS  
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Theorem 5 

If U is panharmonic and vanishes at all points of the boundary of , it vanishes at all 

points of . 

Proof 

Consider the Green’s First Identity, and let’s identify V with U, and suppose U  is 

panharmonic. The Green’s identity then becomes 

                                          
2 2 2

0U U dV U
U

n
dS                           (10)  

Since the right side is vanish, U
2
 and U

2
 are integrable in , and never negatives, it 

must be vanished at all point of . 

 We deduce at once an important consequence. Let us suppose that u and v are 

both panharmonic in , and take on the same boundary values. Then their difference is 

panharmonic in  and reduces to 0 on the boundary. Hence it vanishes throughout . 

We could  state the result as follows. 

 

Theorem 6 

A panharmonic function in  is uniquely determined by its values on the boundary of 

. 

The surface integral in equation (10) will also vanish if the normal derivative 

vanishes everywhere on . Again we see that as a consequence, u will  vanish in . 

 

Theorem 7 

If U is one value, function, panharmonic in , and if its normal derivative vanishes at 

every points of the boundary of , then U  vanishes in . 

 

Theorem 8 

Let U be panharmonic in , and satisfies the condition on the boundary 

                                                        
U

n
hU g,                                                 (11)  
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where h and g are continuous functions  on , and h is never negative. Then there is 

no different function satisfying the same conditions. 

Proof 

Let us suppose that U and V are both panharmonic, and satisfy the same condition on 

the boundary as equation (11).Then their difference is a panharmonic in  and 

( )
( ) .

U V

n
h U V 0  The Green identity becomes  

                              2 2 2 2 0( ) ( ) ( ) .U V U V dV h U V dS  

Since (U-V)
2
 and (U-V)

2
  are integrable in , and h is a continuous function  on , 

and never negative, it must  vanish at all point of . Therefore, U=V in . 

 

Theorem 9 

If U and V  panharmonic in , then   ( ) .U
V

n
V

U

n
dS 0  

Proof 

Let U and V are panharmonic in  . Apply the second  Green identity, we have 

                                   

( . ) ,

( . ) .

V U U V dV V
U

n
dS

U V V U dV U
V

n
dS

2

2

 and

 

If we subtract both two equations  above, then we obtain the result. 
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