MOORE-PENROSE GENERALIZED INVERSE OF POLYNOMIAL MATRICES OVER $F[x_1,x_2,...,x_n]$, $Z[x_1,x_2,...,x_n]$ and $[R[x_1,x_2,...,x_n]^*$

Dian Usdiyana¹⁾

Under the supervision Prof. Drs. Setiadji, MS.²⁾

ABSTRACT

In this thesis we discuss about necessary and sufficient condition for the existence of Moore-Penrose generalized inverse for polynomial matrices over an integral domain $R=F[x_1,x_2,...,x_n]$ and $Z[x_1,x_2,...,x_n]$. We also discussed about necessary and sufficient condition for the existence of Moore-Penrose generalized inverse for any matrices over $R = [R[x_1,x_2,...,x_n]^*$ the ring of rational functions $a(x_1,x_2,...,x_n)b(x_1,x_2,...,x_n)^{-1}$ with real coefficients and with $b(x_1,x_2,...,x_n) \neq 0$ for all $(x_1,x_2,...,x_n)$ in R^n .

An $m \times n$ matrix A over an integral domain $R=F[x_1,x_2,...,x_n]$ has generalized inverses Moore-Penrose if only if there exist orthogonal matrices $P(m \times m)$, $Q(n \times n)$

and unitair matrix
$$M$$
 such that $A = P \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} Q$.

An $m \times n$ matrix A over $R = \mathbb{R}[x_1, x_2, ..., x_n]^*$ has generalized inverses Moore-Penrose if only if A can be written as PA_0Q ($A = PA_0Q$) with P,Q unimodular R-

matrices and
$$A_{\theta} = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$$
, rank $A = r$ constant over all $(x_1, x_2, ..., x_n)$ in \mathbb{R}^n .

Key words: Integral domain, Moore-Penrose generalized inverse, polynomial matrices.

¹⁾ FPMIPA IKIP Bandung

²⁾ FMIPA Universitas Gadjah Mada Yogyakarta