JURUSAN PENDIDIKAN MATEMATIKA FPMIPA-UPI BANDUNG

HAND OUT LIMIT FUNGSI REAL SATU PEUBAH OLEH: FIRDAUS-0716

1. LIMIT FUNGSI

1.1 Definisi

Misalkan f adalah fungsi yang terdefinisi pada setiap bilangan pada suatu selang terbuka yang memuat c, kecuali mungkin di c sendiri. Limit f(x) untuk x mendekati c adalah L ditulis;

$$\lim_{x\to c} f(x) = L$$

$$\forall \varepsilon > 0$$
, $\exists \partial > 0 \ni 0 < |x - c| < \partial \rightarrow |f(x) - L| < \varepsilon$.

1.2 Teorema (ketunggalan limit)

Jika
$$\lim_{x\to c} f(x) = L_1$$
 dan $\lim_{x\to c} f(x) = L_2$, maka $L_1 = L_2$

- 1.3 Teorema Limit
 - (i). Jika m dan k suatu konstanta, maka

$$\lim_{x\to c} (mx+k) = mc+k$$

(ii). Jika k suatu konstanta, maka untuk setiap c

$$\lim_{x\to c} k = k$$

- (iii). $\lim_{x\to c} x = c$
- (iv). Jika $\lim_{x\to c} f(x) = L \operatorname{dan} \lim_{x\to c} g(x) = M$, maka

$$\lim_{x\to c} [f(x)+g(x)] = \lim_{x\to c} f(x) + \lim_{x\to c} g(x) = L + M$$

$$\lim_{x\to c} [f(x)-g(x)] = \lim_{x\to c} f(x) - \lim_{x\to c} g(x) = L - M$$

$$\lim_{x\to c} [f(x).g(x)] = \lim_{x\to c} f(x).\lim_{x\to c} g(x) = L.M$$

$$\lim_{x\to c} [f(x)/g(x)] = \lim_{x\to c} f(x) / \lim_{x\to c} g(x) = L/M, M \neq 0$$

2. LIMIT SEPIHAK

2.1 Definisi

Misalkan f adalah fungsi yang terdefinisi pada setiap bilangan pada suatu selang terbuka (c,d). Limit f(x) untuk x mendekati c dari kanan adalah L ditulis;

$$\lim_{x\to c^+} f(x) = L$$

$$\forall \varepsilon > 0$$
, $\exists \partial > 0 \ni 0 < x - c < \partial \rightarrow |f(x) - L| < \varepsilon$.

2.2 Definisi

Misalkan f adalah fungsi yang terdefinisi pada setiap bilangan pada suatu selang terbuka (c,d). Limit f(x) untuk x mendekati c dari kiri adalah L ditulis;

$$\lim_{x\to c^-} f(x) = \mathsf{L}$$

$$\forall \varepsilon > 0$$
, $\exists \partial > 0 \ni 0 < c - x < \partial \rightarrow |f(x) - L| < \varepsilon$.

2.3 Teorema

 $\lim_{x\to c} f(x)$ ada dan sama dengan L jika dan hanya jika $\lim_{x\to c^+} f(x)$ dan $\lim_{x\to c^-} f(x)$ keduanya ada dan sama dengan L

2.4 CONTOH-CONTOH

Diketahui

$$f(x) = \begin{cases} x^2 - 4 \ jika \ x < 2 \\ 4 \ jika \ x = 2 \\ 4 - x^2 \ jika \ x > 2 \end{cases}$$

Bila ada tentukan limit a. $\lim_{x\to 2^+} f(x)$ b. $\lim_{x\to 2^-} f(x)$ c. $\lim_{x\to 2} f(x)$

b.
$$\lim_{x\to 2^-} f(x)$$

(ii). Diketahui

$$f(x) = \begin{cases} 2x - a & jika \ x < -3 \\ ax + 2b & jika - 3 \le x \le 3 \\ b - 5x & jika \ x > 3 \end{cases}$$

Tentukan nilai a dan b sehingga $\lim_{x\to -3} f(x)$ dan $\lim_{x\to 3} f(x)$ keduanya ada.

3. LIMIT TAK BERHINGGA

3.1 Definisi

Misalkan f adalah fungsi yang terdefinisi pada setiap bilangan pada suatu selang terbuka yang memuat c, kecuali mungkin di c sendiri. Untuk x mendekati c Limit f(x) membesar tanpa batas yang ditulis;

$$\lim_{x\to c} f(x) = +\infty$$

Jika untuk setiap bilangan N > 0 terdapat suatu ∂ > 0 sehingga

Jika
$$0 < |x - c| < \theta$$
 maka $f(x) > N$.

3.2 Definisi

Misalkan f adalah fungsi yang terdefinisi pada setiap bilangan pada suatu selang terbuka yang memuat c, kecuali mungkin di c sendiri. Untuk x mendekati c Limit f(x) mengecil tanpa batas yang ditulis;

$$\lim_{x\to c} f(x) = -\infty$$

Jika untuk setiap bilangan N < 0 terdapat suatu ∂ > 0 sehingga

Jika $0 < |x - c| < \partial$ maka f(x) < N.

3.3 Teorema

Jika r suatu bilangan bulat positif, maka

(i).
$$\lim_{x\to 0^+} \frac{1}{x^r} = +\infty$$

(ii).
$$\lim_{x\to 0^+} \frac{1}{x^r} = \begin{cases} -\infty \ jika \ r \ ganjil \\ +\infty \ jika \ r \ genap \end{cases}$$

3.4 Teorema

Misalkan c suatu bilangan real, $\lim_{x\to c} f(x) = 0$ dan $\lim_{x\to c} g(x) = k$, di mana k suatu konstanta tak nol.

(i). jika c > 0 dan f(x)
$$\rightarrow$$
 0 sepanjang nilai positif dari f(x), maka $\lim_{x\to c} \frac{g(x)}{f(x)} = +\infty$

(ii). jika c > 0 dan f(x)
$$\rightarrow$$
 0 sepanjang nilai negatif dari f(x), maka $\lim_{x\to c} \frac{g(x)}{f(x)} = -\infty$

(iii). jika c < 0 dan f(x)
$$\rightarrow$$
 0 sepanjang nilai positif dari f(x), maka $\lim_{x \to c} \frac{g(x)}{f(x)} = -\infty$

(iv). jika c < 0 dan f(x)
$$\rightarrow$$
 0 sepanjang nilai negatif dari f(x), maka $\lim_{x \to c} \frac{g(x)}{f(x)} = +\infty$

3.5 Teorema

- (i). Jika $\lim_{x\to c} f(x) = +\infty$ dan $\lim_{x\to c} g(x) = k$, di mana k suatu konstanta, maka $\lim_{x\to c} [f(x) + g(x)] = +\infty$
- (ii). $\lim_{x\to c} f(x) = -\infty$ dan $\lim_{x\to c} g(x) = k$, di mana k suatu konstanta, maka $\lim_{x\to c} [f(x) + g(x)] = -\infty$
- (iii). $\lim_{x\to c} f(x) = +\infty$ dan $\lim_{x\to c} g(x) = k$, di mana k suatu konstanta, maka Jika k > 0, $\lim_{x\to c} [f(x).g(x)] = +\infty$
- (iv). $\lim_{x\to c} f(x) = +\infty$ dan $\lim_{x\to c} g(x) = k$, di mana k suatu konstanta, maka Jika k < 0, $\lim_{x\to c} [f(x),g(x)] = -\infty$

3.6 Definisi

Garis x = c dikatakan suatu asimtot tegak dari grafik fungsi f jika paling sedikit salah satu dari pernyataan berikut benar

(i).
$$\lim_{x\to c^+} f(x) = +\infty$$

(ii).
$$\lim_{x\to c^+} f(x) = -\infty$$

(iii).
$$\lim_{x\to c^-} f(x) = +\infty$$

(iv).
$$\lim_{x\to c^-} f(x) = -\infty$$