Gas Laws

Ideal Gas Law Equation of State

Relationship between the variables that describe a gas, could be a parcel of air, or the entire atmosphere

Gas Variables

- **Pressure** intensity of force applied to the parcel of gas (force/area)
- Volume 3D space occupied by the parcel of gas
- Mass quantity of gas in the parcel, measured in mass units
- **Density** mass/volume
- **Temperature** measure of average kinetic energy of the gas

Different Views of Pressure in the Atmosphere

1. At the surface of the earth or a given height above sea level

Pressure is the weight of the atmosphere per unit area (lbs/sq.in.)

2. For a parcel of air

Pressure is the intensity of force applied either externally or internally (lbs/sq.in.)

Pressure is Isotropic

- **Isotropic** equal in all directions
- Gas must be in equilibrium not moving

Hydrostatic Equilibrium

Hydrostatic Equilibrium

- Pressure decreases with height
- Net Force is upward due to difference in pressure on bottom and top of parcel
- Force of gravity depends on mass in parcel
- Force of gravity balances force due to pressure differences

Pressure Layers

P_4		700 mb
	Mass > 100 mb	
P_3		800 mb
D	Mass > 100 mb	000
P ₂	Mass > 100 mb	900 mb
P_1		1000 mb

Gas Laws

Boyle's Law 1660

Relationship of

Pressure and

Volume

Temperature is constant

Boyle's Law - Data

P	V	PxV
1	1	1
2	1/2	1
3	1/3	1
4	1/4	1

Boyle's Law Summary

Pressure and *Volume* of a gas are *Inversely* proportional (if the temperature is constant)

(Pressure) x (Volume) = Constant Value

Boyle's Law Example

1. Start: P = 1000 mb $V = 3 \text{ m}^3$

- 2. $P \times V = 1000 \times 3 = 3000$ (constant value)
- 3. Finish P = 700 mb, ? What is V
- 4. P x V = 3000 700 x (V) = 3000 $V = 3000/700 = 4.3 \text{ m}^3$

Gas Laws

Charles' Law - Data

T	V	TxV	V/T
1	1	1	1
2	2	4	1
3	3	9	1
1/2	1/2	1/4	1

Charles' Law Summary

Temperature and **Volume** are **Directly** proportional (if pressure is constant)

(Volume)/(Temperature) = Constant Value

Charles' Law Example

- 1. Start: $V=5 \text{ m}^3$, T=200 K
- 2. V/T = 5/200 = 0.025 (constant value)
- 3. Finish: T=350 K, ? What is V
- 4. V/T = 0.025V/350 = 0.025

$$v = (0.025) \times (350) = 8.75 \text{ m}^3$$

Ideal Gas Law

Relationship when P, V, and T may all be changing

Combination of Boyle's Law and Charles' Law

Ideal Gas Law

 $(P \times V)/T = Constant Value$

Ideal Gas Law - Example

- 1. Start: P=1000 mb, $V=12 \text{ m}^3$, T=280 K
- 2. (PxV)/T = (1000x12)/280 = 42.85
- 3. Finish: P=600 mb, T=240 K, What is V
- 4. (PxV)/T = 42.85(600xV)/240 = 42.85
 - 2.5xV = 42.85
 - $v = 42.85/2.5 = 17.1 \text{ m}^3$

Pressure Layers

P_4		700 mb
	Mass > 100 mb	
P_3		800 mb
	Mass > 100 mb	
P_2	Mass > 100 mb	900 mb
P_1		1000 mb

•TABLE 8.1

Common Isobaric Charts and Their Approximate Elevation above Sea Level

ISOBARIC SURFACE (MB) CHARTS	APPROXIM (m)	MATE ELEVATION (ft)
1000	120	400
850	1,460	4,800
700	3,000	9,800
500	5,600	18,400
300	9,180	30,100
200	11,800	38,700
100	16,200	53,200

Cross Section of an Isobaric Surface

Pressure – Height - Temperature

	WARM	COLD
SURFACE	LOW Pressure	High Pressure
UPPER	HIGH Pressure	LOW Pressure
LEVELS	(Ridge)	(Trough)

Dalton's Law of Partial Pressures

- Suppose you have a gas that is a mixture of gases A, B, and C (nitrogen, oxygen, and water vapor)
- The gas has a pressure of P_t
- The pressures of gases A, B, and C by themselves are P_A , P_B , and P_C

$$P_{t} = P_{A} + P_{B} + P_{C}$$