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Abstract

Transmission coefficient of an electrons incident @ heterostructure potential with
nanometer-thick trapezoidal barrier grown on anggot materials are derived by solving
the effective-mass equation including off-diagoatiective-mass tensor elements. The
boundary condition for an electron wave functionnder the effective-mass
approximation) at a heterostructure anisotropiciiom is suggested and included in the
calculation. The analytic expressions are appliedthe Si(110)/isGe)sSi(110)
heterostructure, in which the SiGe barrier thiclnssseveral nanometers. It is assumed
that the direction of propagation of the electrarekes an arbitrary angle with respect to
the interfaces of the heterostructure and the &feanass of the electron is position
dependent. The transmission coefficient calculdtedenergy below the barrier height
and varying the applied voltage to the barrier. Tla@smission coefficient depends on

the valley where the electron belongs and not sytmengith the incidence angle.



1. Introduction

Since last half century, the tunneling phenomerwough a potential barrier is
still of interest in the study of quantum transpiortheterostructures. Paranjape (1995)
studied transmission coefficient of an electronain isotropic heterostructure with
different effective masses[1]. Kim and Lee (1988)ived transmission coefficient of an
electron tunneling through a heterostructure bagiewn on anisotropic materials by
solving the effective-mass equation including aHgbnal effective-mass tensor
elements[2],[3]. The effects of different effectimeasses for a heterostructure junction
are also included but they did not consider theatéf of voltage applied to the barrier in
which the square barrier becomes trapezoidal omethis paper, we calculate the
transmission coefficient of an electron tunnelifrgotigh a heterostructure with a

nanometer-thick trapezoidal barrier grown on as@mnopic material.

2. Theoretical M ode
The conduction band energy diagram of a heterdsireigs shown in Fig 1 with
the potential profile is expressed as :

0 for z<0

V(2) = CD—eTVbz for O0<z<d (2)

-eV, for z=d.
Here, the barrier width and height ateand @, respectively. The voltage applied to the
barrier isVy, with e is the electronic charge. The electron is incidesrn region | to the
potential barrier (region 11), in which the matérmd the region | is the same as that of the
material III.

The Hamiltonian for general anisotropic material§2|
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wherem, is the mass of free electrom,is the momentum vector, (@)« is the inverse
effective-mass tensor andr) is the potential energy. The effective mass efdlectron
and potential are dependent only on the z direcfitre wave function of the effective-

mass equation with the Hamiltonian is Eq. (2) i&egias [2]:

W(r) = p(2)expliyz) explk, x+K,y)), (3)
k.a,+ka,
andy=—>"2% V% (4)
a

is wave number parallel to the interface.
By employing the separation variable to Eq. (2)sieasily found thap(2) satisfies the

one dimensional Schrodinger-like equation:
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wheref: is the reduced Planck constant, the substript;;; denotes each region in Fig.

1 and
hZ
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anda;; is the effective mass tensor element.



The time-independent electron wave function in eadmn is therefore:

LIJ:L(Z) — (Aeik12 + Be—iklz)e—(iylz) e'(ikxX+ikyy) , for z< 0’ (9)

H sz(z)dz ) (il xi
LIJZ(Z) - (Ce_(j)kz(z)dz + De’ )e—(|y2z)e (ikyx+ikyy) ’ for0 <z < d, (10)
W, (2) = Fe'e (12 ) for z>d. (11)

The incident wavéexp(k;2) has the wave numbey Which is given as :
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where E; is smaller than the barrier heighit The wave numberky(z) and ks are

expressed, respectively, as follows
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By applying the boundary conditions at z = 0 dan @, which are expressed as follows
[3I:
W, (z=07)=¢,(z=07), (15a)
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we obtain the transmission amplitu@iefrom Egs. (9) and (11) which can be written as:

T, :% =Gexpl(y) . (16)
Here,

d
G = 2k k; (17)

 (P2Sinh?(u) + Q?Cosh? () 2

is the magnitude of,
_1 P
o= {tan (5] tanh(j)} —k,d + (), — y,)d (18)

is the phase of,,

P = (S k, — 22 k2KS) (19)
zz,2 cyzzl

Q = (ksk; +kiky), (20)

K =k,(2=0), (21)

k¢ =k,(z=d), (22)
d

andu = [k, (2)dz. (23)
0

The transmission coefficient is easily obtainednfrdeq. (16) by employing the
expression :

T=T, Ta (24)



If the voltage applied to the barrier is zero, theh=k{ =k, dank; = ks, and the
expressions in Eqgs. (17) and (18) will be the sam#hat given by Lee [2], in which

2k K,

G= , (25)
(P2Sinh?(u) + QCosh? (u)) 2
Q= {tan‘l(gjtanhw} -k, d+(y, - y,)d, (26)
P=(C2lig -T2k, @7)
zz,2 azz,l
Q=2kk,, (28)
andu=k,d. (29)

3. Calculated Results and Discussion

The model used in the numerical calculation is show Fig. 1. There is a

strained SsGe&) s potenstial barrier grown on Si (110). The widthiué barrier d is 50&
and the band discontinuity is taken as 216 meV.

There are four equivalent valleys in the conductiand of Si(110) with a
strained SisGeys potential barrier. The effective mass tensor elgmef these four
valley are not the same. There are two groups kéysin Si(110) and $sGeys The
inverse effective inverse masses used in our ekaare related to the tensor elements
aij shown in Table 1 [2].

Figure 2 shows the chosen coordinate system. We ttak position where the
electron hits the barrier as the origin of the domate system. In the spherical coordinate

system shown in Fig. 2, Eq. (7) becomes
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E= 2hmo { k2 sin? Bcog g +a, k2 sin? sin? ¢ +a ,k? cos 6

+ 2(crxylk2 sin? @cospsing +a,, k* sin* cosfsing : (30)
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We calculated the transmission coefficient for #mgle of incidence fok (the
wave vector of incident electron) varying from 296 90 with incident energies are 25
meV, 75 meV and 150 meV and varying the appliedaga from 50 mV to 150 mV. The
incidence angles afedang, but we fixe to /2 for simplicity and change onfy

The numerical value of transmission coefficientrwincident energy of 75 meV
and applied voltage of 50 mV is shown in Fig. 3lI&al and valley 2 have the biggest
values of transmission coefficient is at normaldeace. We also see that, for all valley,
the transmission coefficient is not symmetric wiib incidence angle.

In Fig. 4 we have given the numerical value of $raission coefficients with
incident energy of 150 meV and applied voltage @%V. Valley 1 and valley 2 have
the highest transmission coefficient value at almauimal incidence and the transmission
coefficient value is higher than for the transnusscoefficient with incident energy 75
meV. It is because electron has energy more higirinel the barrier. The same with
with Fig. 3, for all valleys, the transmission di@ént is not symmetric with the
incidence angle.

If we decrease the incident energy, the electrostrhave lower energy to tunnel
the potential barrier so that the probability afitelling the barrier must smaller than if
electron has higher incident energy as shown in BigBut for the same incident energy,
the transmission coefficient will increase when tapplied voltage to the barrier

increased as shown in Fig. 6. For case in Figsib &, the transmission coefficient is



maximum at normal incident. We also see that, linalleys, the transmission coefficient
is not symmetric with the change of sign of inciderangle §—-0), which confirms the

anisotropic of the materials [2].

Conclusion

We have derived an analytical expression of tragsimmn coefficients of electron through
a nanometer-thick trapezoidal barrier grown on @npic materials under non-normal
incidence. We included the effect of different effee masses at heterojunction
interfaces. The boundary condition for an electwave function (under the effective-

mass approximation) at a heterostructure anisatrppiction is suggested and included
in the calculation. The calculation is done witBigsGe) s potential barrier grown on Si

(110). The transmission coefficient will increa$éhie incident energy is increased. For
the same incident energy, the biggest value ofrdresmission coefficient happens if the
applied voltage to the barrier is high. The caltata shows that the transmission
coefficient and the tunneling time depend on thiéeyaand it is not symmetric with the

angle of incidence.
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Tablel. Tensor elements; used in the numerical calculation.

Valley | Region I dan Il (Si[110])| Region Il (&Ges)
1 526 O 0 645 O 0

0 314 212 0 456 274

0 212 314 0 274 456

2 526 O 0 645 O 0

0 314 -212 0 456 -2.74

0 -212 314 0 -274 456

Tablel. L. Hasanah, et.al.
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FIGURE CAPTIONS

Figure 1. The potential profile of a heterostruetuithout a bias voltage (a) and with the
application of a voltage to the barrier

Figure.2. The coordinates used in the analysis

Figure 3. The transmission coefficient for the angf incident varying from -90to 9C
with incident energies of 75 meV and applied vadtag 50 mV

Figure 4. The transmission coefficient for the angf incident varying from -90to 9C
with incident energies of 150 meV and applied \gdtaf 50 mV

Figure 5. The transmission coefficient for the angf incident varying from -90to 9C
with incident energies of 25 meV and applied vaitafi100 mV

Figure 6. The transmission coefficient for the angf incident varying from -90to 90

with incident energies of 25 meV and applied vatafi150 mV
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Fig.1 L. Hasanah, et.al.
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Fig.2 L. Hasanah, et.al.
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Fig.3L. Hasanah, et.al.
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Fig.4 L. Hasanah, et.al.
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Transmission Coeficient
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Fig.5L. Hasanah, et.al.
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Transmission Coefficient
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Fig.6 L. Hasanah, et.al.
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