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Abstract 
Analytic expressions of transmittance of an electron incident on a heterostructure potential with 
nanometer-thick trapezoidal barrier grown on anisotropic materials have been derived by solving the 
effective-mass equation including off-diagonal effective-mass tensor elements. It was assumed that the 
direction of propagation of the electron makes an arbitrary angle with respect to the interfaces of the 
heterostructure and the effective mass of the electron is position dependent.  The analytic expressions have 
been applied to the Si(110)/Si0.5Ge0.5/Si(110) heterostructure, in which the Si0.5Ge0.5  barrier thickness is 5 
nm.  The transmittance has been calculated for incident energy at z direction below the barrier height with 
varying the applied voltage to the barrier. There are the direct and the Fowler Nordheim tunneling 
depending on electron incident energy. The electron incident energy, the bias voltages given to barrier 
potential and the valley of Si(110)/Si0.5Ge0.5/Si(110) influence the transmittance value.  
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I. Introduction 
Since last half century, the tunneling 

phenomenon through a heterostructure potential 
barrier is still of interest in the study of quantum 
transport in heterostructures. Lee done analysis of 
the electron tunneling time through a 
heterostructure barrier including the position-
dependent effective-mass effect with adopts 
wigner’s phase time approach [1]. Paranjape 
studied transmission coefficient of an electron in 
an isotropic heterostructure with different effective 
masses [2]. Lee compared a one-dimensional 
theoretical phase time for electron tunneling with 
simulations results performed with the software 
Interquanta [3]. Kim and Lee derived the 
transmission coefficient of an electron tunneling 
through a barrier of an anisotropic heterostructure 
by solving the effective-mass equation including 
off-diagonal effective-mass tensor elements 
[4],[5]. Khairrurial, et al. derived the electron 
direct tunneling time through a trapezoidal barrier 
by employing the Wigner phase time [6]. J. 
Nanda, et al. studied a computational model based 
on non-relativistic approach for determination of 
transmission coefficient, resonant tunneling 
energies, group velocity, resonant tunneling 
lifetime and transversal time in multibarrier 
systems (GaAs/AlyGa1-yAs) for energy lower and 
higher than potential barrier height [7]. Previous, 
we have calculated the electron transmittances and 
tunneling time of electron through heterostructure 

square potential barrier which grown on 
anisotropic material Si(110)/Si0.7Ge0.3/Si(110) [4]. 
Then we studied theoretically electron 
transmittance if bias voltage applied to the 
potential barrier in which the square barrier 
becomes trapezoidal one for 
Si(110)/Si0.7Ge0.3/Si(110) [5] and 
Si(110)/Si0.5Ge0.5/Si(110) structures [6] with the 
electron incident energy lower than potential 
barrier. Here, we report the derivation and the 
calculation of the transmittance of an electron 
through an Si(110)/Si0.5Ge0.5/Si(110) 
heterostructure with a nanometer-thick trapezoidal 
barrier grown on an anisotropic material, including 
the effect of applied voltage to the barrier if the 
electron incident energy lower than potential 
barrier and variation of valley 
Si(110)/Si0.5Ge0.5/Si(110). 

 
II. Theoretical Model  

In order to study the behavior of an 
electron in an anisotropic heterostructure, we must 
solve the Schrödinger equation 
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H is Hamiltonian, mo is is the free electron mass, p 
is the momentum vector, (1/mo)α is the inverse 
effective-mass tensor and V(r) is the potential 



energy. Fig. 1 show potential profil at z direction 
The electron is incident from region I to the 
potential barrier (region II).  The effective mass of 
the electron is dependent only on the z direction. 
The wave function of the effective-mass equation 
with the Hamiltonian in Eq. (2) is given as 
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φ(z satisfies the one dimensional Schrödinger-like 
equation: 
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where ħ is the reduced Planck constant, the 
subscript l in αzz,l denotes each region in Fig. 1 and 
electron energy in z direction written as : 
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where the electron total energy and 
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with αij is the effective mass tensor element. 
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Figure 1. Model used in numerical calculation. 

 
The time-independent electron wave function in 
each region is therefore written as :  
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The incident wave A exp(ik1z) has the wave 
number k1 which is given as 
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and  k3 are expressed  as follows 
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     (11) 
where Φ is barrier height due to band discontinuity 
of Si(110) and Si0.5Ge0.5 and the voltage applied to 
the barrier is Vb with e is the electronic charge. By 
applying the boundary conditions at z = 0 dan z = 
d, which are written as follows [5] 
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we obtain the transmission amplitude Ta which is 
defined as 

)(iGaT φexp= ,   (13) 

The transmission coefficient is easily obtained 
from Eq. (13) by employing the expression  
T =Ta

*Ta.                      (14) 
 
III. Results and Discussion 

Figures 1 and 2 show that potential barrier 
Si0.5Ge0.5 (region II) grown on Si (110) (region I 
and III). The barrier width is 50Å band 
discontinuity is 216 meV [2]. The inverse effective 
inverse tensor used in this paper is related to the 
tensor elements αij shown in Table 1 [4].  In this 
transmittance calculation, region I and III is valley 
2 and region II is valley 1. 

 



Table1. Tensor elements (αij) used in the numerical 
calculation 

Valley Region I and III 
(Si [110]) 

Region  II 
(Si0.5Ge0.5) 

1 5.26      0           0 
0      3.14     2.12 
0      2.12     3.14 

6.45      0           0 
0      4.56     2.74 
0      2.74     4.56 

2 5.26      0           0 
0      3.14     -2.12 
0      -2.12     3.14 

6.45      0           0 
0      4.56     -2.74 
0      -2.74     4.56 

 
Figure 2 shows the chosen coordinate system. We 
take the position where the electron hits the barrier 
as the origin of the coordinate system.  

 

 
Figure 2. The coordinate system used in the 

analysis 
 

 
Figure 3. Transmittance as a function of incident 
angle with incident energies of 150, 190 and 216 
meV with applied voltage of 50 mV for valley 1. 

  
We calculated the transmission coefficient for 

the angle of incidence for k (the wave vector of 
incident electron) varying from -90o to 90o. The 
incident angles are θ and φ, but we fix φ to π/2 for 
simplicity and change only θ. The incident angle 
influences the incident energy at z direction. The 
incident energies are 150, 190, dan 216 meV and 
the variation of applied voltage given to potential 
barrier are 5, 50, 108 and 216 mV. Figure 3 shows 
transmittance to incident angle for incident 

energies 150, 190 and 216 meV with bias voltage 
is 50 mV. It can be seen that the transmittance will 
increase as the incident electron energy increases 
because probability of electron to tunnel the 
barrier will increase if the incident electron energy 
increased. For the incident energy of 216 meV, 
there are forbidden energies which incident angles 
give transmittance values bigger than 1. The 
forbidden energies happen at incident angle about 
-20o to -12o, -9o to 10o and 20o to 30o. 

 

 
Figure 4. Transmittance as a function of incident 

energy in z direction for the incident angle varying 
from -90o to 90o with incident energies of 150, 

190, and 216 meV with applied voltage of 50 mV. 
 
Plot transmittance to electron incident energy 

at z direction shown by Fig. 4. We can see that Ez 
which make the transmittance maximum will 
increase as the electron incident energy increase. 
For incident energy 216 meV, the higher 
transmittance is about 1.15 at Ez value about 200 
meV and 216 meV. The transmittance will 
oscillate at value 1 if Ez value bigger than 216 
meV as shown at Fig. 4. 

 

 
Figure 5. Transmittance for incident angle varying 

from -90o to 90o with incident energies of 216 
meV and applied voltages of  5, 50, 108 and 216 

mV. 
 



In Fig.5 and 6 we fix the incident energy to 
216 meV and applied voltage of 5 mV, 50 mV, 
108 mV and 216 mV. Here, we can see that the 
maximum transmittance at bias voltage 108 mV is 
higher than at bias voltage 5mV, 50 mV dan 216 
mV. For bias voltage given to potential barrier 50 
mV, 108 mV and 216 mV forbidden energy 
happen at incident angle about 25o to 60o that is at 
Ez bigger than 160 meV. Whereas, for bias voltage 
50 mV, forbidden energy happen at incident angle 
-5o to 10o that is at Ez bigger than 200 meV. Here, 
we can see that valley variation at 
Si(110)/Si0.5Ge0.5/Si(110) influence the probability 
electron to tunnel potential barrier. 

 

 
Figure 6. Transmittance as a function of incident 
energy at z direction with incident energy of 216 
meV and applied voltages of  5, 50, 108 and 216 

mV. 
 
 

IV. Conclusion 
We have derived an analytical expression of 

transmission coefficient of an electron through a 
nanometer-thick trapezoidal barrier grown on 
anisotropic materials under non-normal incidence. 
The calculation done for Si0.5Ge0.5 potential barrier 
grown on Si(110). The maximum transmittance 
influenced by electron incident energy, bias 
voltage given to potential barrier, and valley 
variation Si(110)/Si0.5Ge0.5/Si(110). There are 
some forbidden energies at specific incident angles 
which make the transmittances value bigger than 
one.  
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