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Abstract

Microgeometry of two dimensional Random
Sierspinski Carpets (RSCs) is analyzed. Twelve mazfels
2D-RSCs with the same porosity and fractal dimension
but three kind pore size distributions are investd. We
estimate the porosityg), specific surface aress)(and
hydraulic diameter ([) of the models from the concept
of two point correlation functions. We also estimdie
entropy length I(*) from concept of local porosity
distribution and local geometry entropies. The piies
estimated using the correlation functions agred hie
calculated porosities. The estimated mean pore et&m
(ro) generally agree with average (mean) side lendgth o

pores (L ).The hydraulic diameterdD() for all models
are larger than estimated pore diamete)s (

Each four models which have the same pore size
distribution have similar local porosity distriboti and
almost have the same trend of entropy function rimit
similar. The entropy length4.{) of the first four models
are 15, 14, 15 and 14, respectively, the next foadels
are 16, 14, 15 and 14, respectively and the last fo
models are all 10.

1. Introduction

One of the most important problems in studies of
porous and heterogeneous media is the specification
the random microstructure, which is needed to ptedi
macroscopic physical properties. There are fouergai in
order to study general statistical description bf t
microstructure available [1]a) it should be well-defined
in terms of geometrical quantities, (b) it shoutddlve
only experimentally accessible parameters, (chduid
be economical size and (d) it should be usableexadt
or appropriate solutions of the underlying equatafn
motion. However, there are only two statistical
methodologies available which fulfill all four
requirements; these are correlation functions [&a8H
local geometry distributions [1,2, 4-6].

The two point correlation function developed by Blai
et al. [3] is of interest because it provides a meastire o
several important parameters of the microstructora
very compact form and its usefulness is not limlgdany
assumption about particle shape. On the other hiwed,
local geometry distributions are a functional
generalization of the correlation function approathere
are two main reasons for considering local porosity
geometry distribution. First, the distribution istential to
distinguish between different microstructure [2, d&jd
second, the basic idea underlying local porosigoti is
to consider the fluctuations of ‘local porosities’ local
volume  fractions inside  microscopic  regions
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(measurement cells) [1]. The size of these regions
becomes a parameter controlling the transition from
microscales to macroscales. The length scale depénd
local porosity distributions are used to calculkegth
scale dependent effective transport coefficients [1

In this paper, we analyze microgeometry of two
dimensional Random Sierspinski Carpets (RSCs). Twelve
models of 2D-RSCs with the same porosity and fractal
dimension but three kind pore size distributiong ar
investigated. We obtain estimates of the poroégy
specific surface areas)(and hydraulic diameter () of
the models from the concept of two point correlatio
function and the entropy lengthi*) from concept of
local porosity distribution and local geometry epies

2. Microgeometry analysis

In this section, we describe briefly the conceptvad
point correlation function and local porosity diistition
which are used for microgeometry analysis.

2.1. Two point correlation functions

A binary image of the cross section through porous
media can be idealized as a two-phase medium ¢imgsis
of pore and phase. We can define indicator fundtifor
any positiorx in the material

f (X) _ {1 for pore

0 for phase (grain)

@

Porosity @) can be estimated as a sum of indicator
functionf over the area of the image of any cross section.
The sum of indicator functiohis known as the one point
correlation functiors, [3]:

s(M=(f(¥)=¢. (2)
Meanwhile, two point correlation function§)) are

defined as the probability that two points separdig a
distance in the pore space [3]:

S,(n=(f(¥ f(x+n) . 3)
The other properties that can be estimated frompeint
correlation function is specific surface arspdefined as
the ratio of the total surface area of the porespha
interface to the total volume of the porous medihe
slope near the origin is proportional to the specif
surface areas| of the media [3]:

“4)

where a prime denotes a derivative with respect.to
Then, we can write a line tangent to Becurve atr = 0
as follows

S(N=8'0)r+g.

s
S,'(0)=-—,
4

®)



In fact that the two point correlation functionsear
fluctuated around¢?, an intersection between a line
tangent to the two point correlation functio§sand ¢¢
can expressed as

¢ =S'O0)r +9. 6)
Here,r. is an effective pore diameter:
Ap-1) 4
r=———=—(¢-1). )
S,'(0) S

It has been studied by Blaat al. [3], equation (6)
together with equation (7) gives an important ptgfsi
property. As an example, based on idealized spferks,
an effective pore diametey, is related to the hydraulic
diameteDy, which is defined as [7]

p, =2 ®)

‘Model ().(f).(q) and (h)

In derivation of equations (7)-(8), one can sed thas
not limited by any assumption about particle sh&ece
the pore shape of our model is a collection of segiat’s
not appropriate to defing as effective pore diameter. We
interpret thatr. and 4¢4s are correspondetb side length
(L) of the pore.
In the case of capillary tube model, the hydraulic

diameter is given by [8]

4A

D,=—. ©)
L

A
where A and L, are area and perimeter of pores,
respectively. Since the pore shape is a collectbn
squares, theDy is associated with average side length of

the pores of the models[().

1@ K,) =(3p-@K,)) . (10)
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Figure 1 Twelve models of Random Sierspinski Carpets widirthssociated pore size distribution.

1.2. Local porosity distribution

In the case of a stochastic porous medium, thecelle-
porosity density function is defined for each meament
cell as [1]:

u@K,) =(lp-¢K,)) (12)
whereK|is an element of the partitioning of the sample

space andgK;) is local porosity inside a measurement
cellK; defined as

1
¢K1)=HZf(x)- (12)
The average Iocal‘ porosity is then defined as
1
¢ = [qupdo, (13)

therefore for a homogenous porous medium the
definitions (11) and (12) yield [1]:

aK) = [ K )do=(g).

One interesting possibility is to minimize the emy
function[1]

(L) = [u@L)logu@Lye

relative to the conventional a priory uniform distition.
The entropy lengthL* is then determined through the
condition [1]

di(L)

dL

(14)

(15)

=0 (16)

L=L*



3. Description of the models

The twelve fractal models of porous media shown in
figure 1 are generated by Random Sierpinski Carpets
(RSCs). White indicates the pore space. Model (a)
through (d) have the same scale factor 4 and genata
initial porosity 0.062 and at fourth iteration. Tinext
four models (Model (e) through (h)) have scaledadit
and generate at initial porosity 0.1216 and at Iéco
iteration. And the last four models generate atiahi
porosity 0.2275 and at first iteration. The numioér
iteration shows the number of pore size. The
distributions of pore size for the models are shawn
figure 1. The resolution of all images is 256x25%efs.

All images has the same porosigg=0.2275) and fractal
dimension of phasd&1.95).

4. Result and Discussion

Figure 2 displays the two point correlation funoso
as a function of r for model (a) and (b), (e) afdaad (i)
and (j). Each four models which have the same pze
distribution, have similar trend of two point cdaton
function. For large r, the two point correlatiométions
are fluctuated around#. The two point correlation
function Sy(r) for images which has the same pore size
distribution are nearly indistinguishable at smallbut
distinguishable at largeexcept for model (i) through (l).
Figure 2 show tha,(r) can distinguish models that have
different kind of pore size distributions. If weolo closely
to figure 2, we can identify the curve bendsSsr) at
small r. In these cases the number of bends isl equa
number of pore size. These bends are easily oliberve
because of the square-shape of pores. For rouhdpes
of pores, the point correlation function is smoothe

As we mention earlier that, two point correlation
function is very useful for characterize microgetme
and estimate several important properties such as
porosity, specific surface areg) @nd hydraulic diameter
(Dy). Table 1 list pore parameters estimated from two
point correlation function for all models of figufie The
porosities estimated using the correlation functiagree
with the calculated porosities. The estimated meaire
diameter £.) generally agree with average (mean) side

length of pores [ ). The deviation is large for wider
spectrum of pore size distribution. Even though ehdd)
through (h) have wider spectrum of pore size distion,
but the number of larger pore sizes are less exlsethan

smaller ones, resulting average of side lendth) (©f the
models are near 1. Since model (e) and (f) have a
collection of pores which uniform in size, the ested
mean pore diameter has almost the same value with

average of side lengthL(). The hydraulic diameter®(,)
for all models are larger than estimated pore diarse
(ro). it is consequences of equation (6). B&tial[3] used
higher magnification images for determining the gma

specific-surface area because determirds{@) from high
magnification images is not accurate due to poor
statistical sampling of the total pore space, tewml
diameter hydraulic @) of their samples generally
smaller than estimated mean pore diametgr (

Although each four models with the same pore size
distributions have different spatial distributiontheir
graphical of two point correlation functions areving
almost the same trend. The estimated parametehsasc
porosity, specific surface area, mean pore diam@ger
and hydraulic diameterD) generally almost have the
same value. From this facts, we infer that the iapbat
distribution of porous media in these cases have no
significant influence to parameters such as specifi
surface area mean pore diameter) (and hydraulic
diameter Dy).

Local porosity distributionsi/(¢g; L) are calculated

using equation (12) for several measurement ceis w
side lengthL = 5 andL=70 pixels. Each four models
which have the same pore size distribution, hage al
similar local porosity distribution. Figure 3 showlsat
local porosity distributions are generally conceted at

origin and at 1 for smalL and aroundq; for large L.

From equation (14), we found that all image of fega is
found to be homogeneous. Local porosity distributid
the models (model (a) to (h)) which have wider spec

of pore size distribution generally more fluctuatiben
the models which have only one pore size (model (i)
through (1)).

Figure 4 shows entropy functions as a functionhef t

length of the measurement cell. For each four nsodel
which have the same pore size distribution almasteh
the same trend of entropy function but not similEne
entropy lengthsL(*) of the first four models are 15, 14,
15 and 14, respectively, the next four models &eld,
15 and 14, respectively and the last four modedsadir
10. The entropy length of the last four models e
same due to their uniform pore size and are smédbar
the other models due to their smaller pore size.
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Figure 2. Two point correlation function for six
represented models of their associated pore size
distribution at figure 1.

Table 1 Pore parameters estimated from two point coiogldtinction for twelve RSC models

Model Real Precr S le Dy=4¢s L (in pi

. I in pixels
(in pixel?) (in pixels) | (in pixels) (in pixels)

a 0.2275 0.2271 0.262 2.682 3.476 1.266

(a)

(b) 0.2275 0.2279 0.262 2.685 3.471 1.266

C 0.2275 0.2268 0.262 2.675 3.470 1.266

(c)

(d) 0.2275 0.2270 0.261 2.687 3.483 1.266




(e) 0.2275| 0.2275 0.387 1.817 2.353 1.066
H 0.2275 0.2274 0.387 1.817 2.360 1.066
(9) 0.2275 | 0.2275 0.390 1.804 2.333 1.066
(h) 0.2275 | 0.2275 0.387 1.814 2.348 1.066
(i) 0.2275 0.2275 0.684 1.028 1.330 1
() 0.2275 0.2273 0.683 1.029 1.332 1
(k) 0.2275 | 0.2275 0.680 1.027 1.337 1
0} 0.2275 0.2275 0.683 1.028 1.332 1
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Figure 3. Local porosity density functiom(gL) for
three represented models of their associated poee s
distribution at figure 1 for measurement cells afes
length L=5 and 70 pixels, respectively
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4, Conclusions

We have analyzed microgeometry of two dimensional
Random Sierspinski Carpets (RSCs). The twelve models
of 2D-RSCs with the same porosity and fractal
dimension but three kind pore size distributionyeha
been investigated. We obtain the porosity, épecific
surface areas| and hydraulic diameterDg) and the
entropy lengthl(*).

The two point correlation functioBy(r) as function
of r for models which have the same pore size
distribution are nearly indistinguishable at snralbut
distinguishable at large except for models which
consist only one pore size. The porosities estichate
using the correlation functions agree with the aialted
porosities. The estimated mean pore diametgf (
generally agree with average (mean) side lengfhoods

(L ).The hydraulic diametersD(;) for all models are
larger than estimated pore diametegs (

Each four models which have the same pore size
distribution have similar local porosity distribomi and
almost have the same trend of entropy functionrmit
similar. The entropy length&{) of the first four models
are 15, 14, 15 and 14, respectively, the next foodels
are 16, 14, 15 and 14, respectively and the last fo
models are all 10. The entropy length of the lastr f
models are the same due to their uniform pore @ik
are smaller than the other models due to their lsmal
pore size.
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