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Abstract

Microgeometry of two dimensional Random Sierspinski
Carpets (RSCs) is analyzed for providing a quantiativ

means for understanding the dependence of physical

properties on the pore structure. Six models ofREES
with the same porosity and fractal dimension bueeh
kind pore size distributions are investigated. Weain
estimates of the porosity), specific surface area)(and
hydraulic diameter () of the models from the concept
of two point correlation function and the entrogndth
(L*) from concept of local porosity distribution aratél
geometry entropies. Estimated porositg), ( specific
surface areas) and hydraulic diameter () of the
models generally agree with expected results. Bumthl
porosity distribution density function and entropy
function for wider spectrum of pore sizes is more
fluctuated than the other two. The entropy lenditts
are 15 and 14 for two models which consist foufedént
pore sizes, respectively, 14 and 16 for two modéigh
consist two different pore sizes, respectively a@dfor
the last two models which consist only one pore.siz

1. Introduction

One of the most important problems in studies abps

and heterogeneous media is the specification of the

random microstructure, which is needed to predict
macroscopic  physical  properties. A  complete
specification of the random microstructure is both
impractical and unnecessary. It is therefore imgrdrto
have general statistical description of the micragtre
available. Such a description should meet fouedat[1]:

(@) it should be well-defined in terms of geomettic
quantities, (b) it should involve only experimehtal
accessible parameters, (c) it should be econorsical
and (d) it should be usable and exact or apprapriat
solutions of the underlying equation of motion. @utty
there are only two statistical methodologies atdda
which fulfill all four requirements; these are caation
functions [1-3] and local geometry distributionsg4-6]

The two point correlation function developed byiB[3]

is of interest because it provides a measure oéraév
important parameters of the microstructure in ayver
compact form and its usefulness is not limited loy a
assumption about particle shape.

There are two main reasons for considering locedgity

or geometry distribution. First, the distributiangotential

to distinguish between different microstructures]2and
second, the basic idea underlying local porosigoti is

to consider the fluctuations of ‘local porosities’ local
volume fractions inside  mesoscopic  regions
(measurement cells)[1]. The size of these regions
becomes a parameter controlling the transition from
microscales to macroscales. The length scale depéend
local porosity distributions are used to calculbegth
scale dependent effective transport coefficients.[1

In this paper, we analyze microgeometry of two
dimensional Random Sierspinski Carpets (RSCs) for
providing a quantitative means for understanding th
dependence of physical properties on the pore tsteic
Six models of 2D-RSCs with the same porosity and
fractal dimension but three kind pore size distiiims are
investigated. We obtain estimates of the poro&@y
specific surface areas)(and hydraulic diameter () of

the models from the concept of two point correlatio

function and the entropy length*) from concept of local
porosity distribution and local geometry entropies.

2. Microgeometry Analysis

2.1. Two Point Correlation Function

A binary image of the cross section through ponoeslia
can be idealized as a two-phase medium consisting o
pore and phase. We can define indicator functifmn &ny
position x in the material

f (X) _ {1 for pore

0 for phase (grain)

@

Porosity @ can be estimated, if we sum of f over the area
of the image of any cross section. The sum is knawn
the one point correlation function B]:

S(N=(f(¥)=9¢ %)
Meanwhile, two point correlation function fdefine as

the probability that two point separated by a disear
will both be in the pore space [3]:

S(N=(f(R f(x+ 1) 3

The other properties that can be estimated fromgaint
correlation function is specific surface arepdefined as
the ratio of the total surface area of the porespha
interface to the total volume of the porous medihe
slope near the origin is proportional to the spedtrface
area §) of the media [3]:

, S
S(0)=-— @)
4
Thus, we can write line tangent to thec8rve at r=0:

S(N=8'0)r+g (5)

Since, the two point correlation functions are fuated
around ¢, Blair et.al [3] suspect that there will be an
important property estimated from intersect betwten
line tangent to the &nd ¢:

¢ =S'0)p+¢
_Ye-1) _4p,
=" —=—(p-1)
S'0) s
Since, Blair illustrate the application of, $ased on
idealized sphere packs, he defigeas an effective pore

diameter, becauseg is related to the hydraulic diameter
Dy, which is defined as [7]

4
DH = _{0 (7
S

If we look closely to the derivation of, 1it is not limited
by any assumption about particle shape. Since the p
shape of our model is a collection of squares, rité
appropriate to define;ras effective pore diameter. We

©)

4
interpret that(,rand—qp are correspondetb side length
S

(L) of the pore.
In capillary tube model, the hydraulic diametef7is

DH :ﬁ
LA

where A and |, are area and periphery of pores,
respectively. Since the pore shape in this casa is

®



collection of squares, soyDs associated with average
side length of the pores of the models }.
2.2. Local Porosity Distribution

For a stochastic porous medium the one-cell pgrosit
density function is defined for each measuremeih{Zle

M@ K,)=(3(g-aK))) ©
where Kis an element of the partitioning of the sample
space and(ﬂ(Kj ) is local porosity inside a measurement
cell K; defined as

#<)= 23 F09

XOK;

(10)

1
The average local porosity define gs= Iﬂj((ﬂ)dqﬂ,
0

therefore for a homogenous porous medium the
definitions (8) and (9) yield [1]:

AK)) = [gu(@K,)dp=(9)

One interesting possibility is to optimize an epyr@r the
geometrical content contained in,u((ﬂ, L) or
equivalently to minimize the entropy functidi]

(11)

Model (a),(b),(c) and (d)

Model (e),(f),(g) and (h)

(L) =[ugL)logu@L e @2

relative to the conventional a priory uniform distition.
The entropy length L* is then determined througe th
condition [1]

du(g L)
dL

=0

L=L*

(13)

3. Description of the models
The twelve fractal models of porous media shown in
figure 1 are generated by Random Sierpinski Carpets
(RSCs). White indicates the pore space. Model (a)
through (d) have the same scale factor 4 and genata
initial porosity 0.062 and at fourth iteration. Thext four
models (Model (e) through (h)) have scale factorah@
generate at initial porosity 0.1216 and at sectertion.
And the last four models generate at initial pdsosi
0.2275 and at first iteration. The number of itemt
shows the number of pore size. The distributionpart
size for the models are shown in figure 1. The Itgtgm
of all images is 256x256 pixels. All images has shene
porosity @=0.2275) and fractal dimension of phase
(D=1.95).
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Figure 1. Twelve models of Random Sierspinski Carpéitstheir associated pore size distribution.

4. Result and Discussion

Figure 2 displays the two point correlation
functions as a function of r for model (a),(e) afid
Each 4 models which have the same pore size
distribution, have similar two point correlationnfttion.

For large r, the two point correlation functionse ar
fluctuated around?. The two point correlation function
S)(r) for images which has the same pore size

distribution are nearly indistinguishable at smalbut
distinguishable at large r except for model (eptigh

(f). Figure 2 show that,,8) can distinguish models that
have different kind of pore size distributionswié look
closely to figure 2, we can identify the curve berad
S,(r) at small r. In these cases the number of bémnds
equal to number of pore size. These bends areyeasil
observed because of the square-shape of pores. For
rounder-shape of pores it will result smoother aint
correlation functions.



As we mention earlier that, two point
correlation function is very useful for characteriz
microgeometry and estimate several important ptigser
such as porosity, specific surface area (s) andaloyid
diameter (). Table 1 list pore parameters estimated
from two point correlation function for all modetsf
figure 1. The porosities estimated using the catiah
functions agree with the calculated porosities. The
estimated mean pore diametey) @enerally agree with

average (mean) side length of pords . The deviation
is large for wider spectrum of pore size distribati
Even though model (a) through (h) have wider spectr
of pore size distribution, but the number of largere
sizes are less extremely than smaller ones, regulti

average of side lengthl() of the models are near 1.
Since model (e) and (f) have a collection of pavbgch

uniform in size, the estimated mean pore diametgr (
has almost the same value with average of sideHeng

(L). The hydraulic diameters ([p for all models are
larger than estimated pore diameters). (rit is
consequences of equation (6). Bleira[3] used higher
magnification images for determining the image
specific-surface area because determininf)Sfrom
high magnification images is not accurate due torpo
statistical sampling of the total pore space, tesyl
diameter hydraulic (B) of their samples generally
smaller than estimated mean pore diameggr (r

Although each four models with the same pore
size distributions have different spatial distribos,
their graphical of two point correlation functiorse
having almost the same trend. The estimated paeasnet
such as porosity, specific surface area, mean pore
diameter () and hydraulic diameter () generally
almost have the same value. From this facts, wer inf
that the spatial distribution of porous media iresh
cases have no significant influence to parameteb as
specific surface area mean pore diametg) énd
hydraulic diameter ().

Local porosity distributions £/(¢@; L) are

calculated using equation (9) for several measuneme
cells with side length. = 5 andL=70 pixels. Each four
models which have the same pore size distributiame
also similar local porosity distribution. FiguresBows
that local porosity distributions are generally
concentrated at origin and at 1 for smaland around

& for largeL. From equation (11), we found that all

image of figure 1 is found to be homogeneous. Local
porosity distribution of the models (model (a) t)(
which have wider spectrum of pore size distribution
generally more fluctuated than the models whichehav
only one pore size (model (i) through (1)).

Figure 4 shows entropy functions as a function
of the length of the measurement cell. For eachr fou
models which have the same pore size distribution
almost have the same trend of entropy functionnmat
similar. The entropy length&¥) of the first four models
are found at 15, 14, 15 and 14, respectively, the four
models are found at 16, 14, 15 and 14, respectivety
the last four models are found all at 10. The amtr
length of the last four models are the same dubew
uniform pore size and are smaller than the othetdeiso
due to their smaller pore size.
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Figure 2. Two point correlation function for three
represented models of their associated pore size
distribution at figure 1.
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Figure 3. Local porosity density functiqr{g,L) of for
three represented models of their associated peee s
distribution at figure 1 for measurement cells afes
length L=5 and 70 pixels, respectively
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Figure 4. Entropy function S(L) as a function okth
length of the measurement cell for three represente
models of their associated pore size distribution.



Table 1. Pore parameters estimated from two pairetation function for twelve RSC models

Model Greal ¢rrcr S e Dy=4¢/s L (in oi

(in pixer | (in pixels) | (in pixels) L (in pixels)
@ | 02275| 02271 0.262 2.682 3.476 1.266
(b) | 0.2275 | 0.2279 0.262 2.685 3.471 1.066
(© | 02275 | 0.2268 0.262 2675 3.470 1.266
(d | 0.2275] 0.2270 0.261 2.687 3.483 1.266
(€) | 0.2275| 0.2275 0.387 1817 2353 1.066
()| 0.2275 | 0.2274 0.387 1817 2.360 1.066
(@ | 0.2275] 0.2275 0.390 1.804 2.333 1.066
(h) | 02275 0.2275 0.387 1814 2348 1.066
() | 02275 | 02275 0.684 1.028 1.330 1
() | 02275 | 02273 0.683 1.029 1332 1
(K| 0.2275 | 0.2275 0.680 1.027 1.337 1
() | 02275 | 0.2275 0.683 1.028 1332 1

6. Conclusion

We analyzed microgeometry of two dimensional
Random Sierspinski Carpets (RSCs). The six models of
2D-RSCs with the same porosity and fractal dimension
but three kind pore size distributions have ingzged.
We obtain estimates of the porositg,(specific surface
area §) and hydraulic diameter () of the models from
the concept of two point correlation function arub t
entropy length I(*) from concept of local porosity
distribution and local geometry entropies.

Estimated porosity ¢, specific surface areas)(and
hydraulic diameter ([)) of the models generally agree
with expected results. Both local porosity distribot
density function and entropy function for wider sfpem

of pore sizes is more fluctuated than the other. flie
entropy lengthsL(*) are 15 and 14 for two models which
consist four different pore sizes, respectively,abd 16

for two models which consist two different poreesiz
respectively and 10 for the last two models whichsist
only one pore size.
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