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Abstract 

 
Microgeometry of two dimensional Random Sierspinski 
Carpets (RSCs) is analyzed for providing a quantitative 
means for understanding the dependence of physical 
properties on the pore structure. Six models of 2D-RSCs 
with the same porosity and fractal dimension but three 
kind pore size distributions are investigated.  We obtain 
estimates of the porosity (φ), specific surface area (s) and 
hydraulic diameter (DH) of the models from the concept 
of two point correlation function and the entropy length 
(L* ) from concept of local porosity distribution and local 
geometry entropies. Estimated porosity (φ), specific 
surface area (s) and hydraulic diameter (DH) of the 
models generally agree with expected results. Both local 
porosity distribution density function and entropy 
function for wider spectrum of pore sizes is more 
fluctuated than the other two. The entropy lengths (L* ) 
are 15 and 14 for two models which consist four different 
pore sizes, respectively, 14 and 16 for two models which 
consist two different pore sizes, respectively and 10 for 
the last two models which consist only one pore size.      
 

1. Introduction 
 
One of the most important problems in studies of porous 
and heterogeneous media is the specification of the 
random microstructure, which is needed to predict 
macroscopic physical properties. A complete 
specification of the random microstructure is both 
impractical and unnecessary. It is therefore important to 
have general statistical description of the microstructure 
available. Such a description should meet four criteria [1]: 
(a) it should be well-defined in terms of geometrical 
quantities, (b) it should involve only experimentally 
accessible parameters, (c) it should be economical size 
and (d) it should be usable and exact or appropriate 
solutions of the underlying equation of motion. Currently 
there are only two statistical methodologies available 
which fulfill all four requirements; these are correlation 
functions [1-3] and local geometry distributions [1-2,4-6] 
 The two point correlation function developed by Blair [3] 
is of interest because it provides a measure of several 
important parameters of the microstructure in a very 
compact form and its usefulness is not limited by any 
assumption about particle shape.  
There are two main reasons for considering local porosity 
or geometry distribution. First, the distribution is potential 
to distinguish between different microstructure [2,5] and 
second, the basic idea underlying local porosity theory is 
to consider the fluctuations of ‘local porosities’ or local 
volume fractions inside mesoscopic regions 
(measurement cells)[1]. The size of these regions 
becomes a parameter controlling the transition from 
microscales to macroscales. The length scale dependent 
local porosity distributions are used to calculate length 
scale dependent effective transport coefficients.[1] 
In this paper, we analyze microgeometry of two 
dimensional Random Sierspinski Carpets (RSCs) for 
providing a quantitative means for understanding the 
dependence of physical properties on the pore structure. 
Six models of 2D-RSCs with the same porosity and 
fractal dimension but three kind pore size distributions are 
investigated.  We obtain estimates of the porosity (φ), 
specific surface area (s) and hydraulic diameter (DH) of 
the models from the concept of two point correlation 

function and the entropy length (L* ) from concept of local 
porosity distribution and local geometry entropies. 
 

2. Microgeometry Analysis 
 

2.1. Two Point Correlation Function 
A binary image of the cross section through porous media 
can be idealized as a two-phase medium consisting of 
pore and phase. We can define indicator function f for any 
position x in the material  

1 for pore 

0 for phase (grain) 
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Porosity (φ) can be estimated, if we sum of f over the area 
of the image of any cross section. The sum is known as 
the one point correlation function S1 [3]: 

1( ) ( )S r f x φ= =     (2) 

Meanwhile, two point correlation function (S2) define as 
the probability that two point separated by a distance r 
will both be in the pore space [3]:   

2( ) ( ) ( )S r f x f x r= +    (3) 

The other properties that can be estimated from two point 
correlation function is specific surface area (s) defined as 
the ratio of the total surface area of the pore-phase 
interface to the total volume of the porous media. The 
slope near the origin is proportional to the specific surface 
area (s) of the media [3]: 

2 '(0)
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s
S = −      (4) 

Thus, we can write line tangent to the S2 curve at r=0: 

2 2( ) '(0)S r S r φ= +     (5) 

Since, the two point correlation functions are fluctuated 
around φ2, Blair et.al [3] suspect that there will be an 
important property estimated from intersect between the 
line tangent to the S2 and φ2:   

2
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Since, Blair illustrate the application of S2 based on 
idealized sphere packs, he define rc as an effective pore 
diameter, because rc is related to the hydraulic diameter 
DH, which is defined as [7] 
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s
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If we look closely to the derivation of rc, it is not limited 
by any assumption about particle shape. Since the pore 
shape of our model is a collection of squares, it’s not 
appropriate to define rc as effective pore diameter. We 

interpret that rc and 
4

s

φ
 are corresponded to side length 

(L) of the pore. 
In capillary tube model, the hydraulic diameter is [7] 
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where A and LA are area and periphery of pores, 
respectively. Since the pore shape in this case is a 



collection of squares, so DH is associated with average 

side length of the pores of the models (L ).  
 
2.2. Local Porosity Distribution  
For a stochastic porous medium the one-cell porosity 
density function is defined for each measurement cell [1]:  

( ; ) ( ( ))j jK Kµ φ δ φ φ= −    (9) 

where Kj is an element of the partitioning of the sample 

space and  ( )jKφ is local porosity inside a measurement 

cell Kj defined as 
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The average local porosity define as 

1

0

( )dφ φµ φ φ= ∫ , 

therefore for a homogenous porous medium the 
definitions (8) and (9) yield [1]: 

1

0

( ) ( ; )j jK K dφ φµ φ φ φ= =∫   (11) 

One interesting possibility is to optimize an entropy or the 

geometrical content contained in ( ; )Lµ φ  or 

equivalently to minimize the entropy function  [1] 

1

0

( ) ( ; ) log ( ; )I L L L dµ φ µ φ φ= ∫   (12) 

 
relative to the conventional a priory uniform distribution. 
The entropy length L* is then determined through the 
condition  [1] 

*

( ; )
0

L L

d L

dL

µ φ
=

=     (13) 

 
3. Description of the models 

The twelve fractal models of porous media shown in 
figure 1 are generated by Random Sierpinski Carpets 
(RSCs). White indicates the pore space. Model (a) 
through (d) have the same scale factor 4 and generate at 
initial porosity 0.062 and at fourth iteration. The next four 
models (Model (e) through (h)) have scale factor 16 and 
generate at initial porosity 0.1216 and at second iteration. 
And the last four models generate at initial porosity 
0.2275 and at first iteration. The number of iteration 
shows the number of pore size. The distributions of pore 
size for the models are shown in figure 1. The resolution 
of all images is 256x256 pixels. All images has the same 
porosity (φ=0.2275) and fractal dimension of phase 
(D=1.95).  
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Pore size distribution of model (a) 
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Figure 1. Twelve models of Random Sierspinski Carpets with their associated pore size distribution. 
 

4. Result and Discussion 
 

Figure 2 displays the two point correlation 
functions as a function of r for model (a),(e) and (f). 
Each 4 models which have the same pore size 
distribution, have similar two point correlation function. 
For large r, the two point correlation functions are 
fluctuated around φ2. The two point correlation function 
S2(r) for images which has the same pore size 

distribution are nearly indistinguishable at small r, but 
distinguishable at large r except for model (e) through 
(f). Figure 2 show that, S2(r) can distinguish models that 
have different kind of pore size distributions. If we look 
closely to figure 2, we can identify the curve bends of 
S2(r) at small r. In these cases the number of bends is 
equal to number of pore size. These bends are easily 
observed because of the square-shape of pores. For 
rounder-shape of pores it will result smoother two point 
correlation functions. 



As we mention earlier that, two point 
correlation function is very useful for characterize 
microgeometry and estimate several important properties 
such as porosity, specific surface area (s) and hydraulic 
diameter (DH). Table 1 list pore parameters estimated 
from two point correlation function for all models of 
figure 1. The porosities estimated using the correlation 
functions agree with the calculated porosities. The 
estimated mean pore diameter (rc) generally agree with 

average (mean) side length of pores (L ). The deviation 
is large for wider spectrum of pore size distribution. 
Even though model (a) through (h) have wider spectrum 
of pore size distribution, but the number of larger pore 
sizes are less extremely than smaller ones, resulting 

average of side length (L ) of the models are near 1.  
Since model (e) and (f) have a collection of pores which 
uniform in size, the estimated mean pore diameter (rc) 
has almost the same value with average of side length 

( L ). The hydraulic diameters (DH) for all models are 
larger than estimated pore diameters (rc). it is 
consequences of equation (6). Blair et.al[3] used higher 
magnification images for determining the image 
specific-surface area because determining S2(0) from 
high magnification images is not accurate due to poor 
statistical sampling of the total pore space, resulting 
diameter hydraulic (DH) of their samples generally 
smaller than estimated mean pore diameter (rc). 

Although each four models with the same pore 
size distributions have different spatial distributions, 
their graphical of two point correlation functions are 
having almost the same trend. The estimated parameters 
such as porosity, specific surface area, mean pore 
diameter (rc) and hydraulic diameter (DH) generally 
almost have the same value. From this facts, we infer 
that the spatial distribution of porous media in these 
cases have no significant influence to parameters such as 
specific surface area mean pore diameter (rc) and 
hydraulic diameter (DH).     

Local porosity distributions ( ; )Lµ φ are 
calculated using equation (9) for several measurement 
cells with side length L = 5 and L=70 pixels. Each four 
models which have the same pore size distribution, have 
also similar local porosity distribution. Figure 3 shows 
that local porosity distributions are generally 
concentrated at origin and at 1 for small L and around 

φ  for large L.  From equation (11), we found that all 

image of figure 1 is found to be homogeneous. Local 
porosity distribution of the models (model (a) to (h)) 
which have wider spectrum of pore size distribution 
generally more fluctuated than the models which have 
only one pore size (model (i) through (l)).  

Figure 4 shows entropy functions as a function 
of the length of the measurement cell. For each four 
models which have the same pore size distribution 
almost have the same trend of entropy function but not 
similar. The entropy lengths (L* ) of the first four models 
are found at 15, 14, 15 and 14, respectively, the next four 
models are found at 16, 14, 15 and 14, respectively and 
the last four models are found  all at 10. The entropy 
length of the last four models are the same due to their 
uniform pore size and are smaller than the other models 
due to their smaller pore size.  
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Figure 2. Two point correlation function for three 
represented models of their associated pore size 
distribution at figure 1. 

Local Porosity Distribution (L=5 pixels)
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Local Porosity Distribution (L=70 pixels)
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Figure 3. Local porosity density function µ(φ,L) of for 
three represented models of their associated pore size 
distribution at figure 1 for measurement cells of side 
length L=5 and 70 pixels, respectively 
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Figure 4. Entropy function S(L) as a function of the 
length of the measurement cell for three represented 
models of their associated pore size distribution. 



Table 1. Pore parameters estimated from two point correlation function for twelve RSC models 
Model φreal φTPCF s  

(in pixel-1) 
rc 

(in pixels) 
DH=4φ/s  

(in pixels) 
L (in pixels) 

(a) 0.2275 0.2271 0.262 2.682 3.476 1.266 
(b) 0.2275 0.2279 0.262 2.685 3.471 1.266 
(c) 0.2275 0.2268 0.262 2.675 3.470 1.266 
(d) 0.2275 0.2270 0.261 2.687 3.483 1.266 
(e) 0.2275 0.2275 0.387 1.817 2.353 1.066 
(f) 0.2275 0.2274 0.387 1.817 2.360 1.066 
(g) 0.2275 0.2275 0.390 1.804 2.333 1.066 
(h) 0.2275 0.2275 0.387 1.814 2.348 1.066 
(i) 0.2275 0.2275 0.684 1.028 1.330 1 
(j) 0.2275 0.2273 0.683 1.029 1.332 1 
(k) 0.2275 0.2275 0.680 1.027 1.337 1 
(l) 0.2275 0.2275 0.683 1.028 1.332 1 

 
 

6. Conclusion 
 

We analyzed microgeometry of two dimensional 
Random Sierspinski Carpets (RSCs). The six models of 
2D-RSCs with the same porosity and fractal dimension 
but three kind pore size distributions have investigated.  
We obtain estimates of the porosity (φ), specific surface 
area (s) and hydraulic diameter (DH) of the models from 
the concept of two point correlation function and the 
entropy length (L* ) from concept of local porosity 
distribution and local geometry entropies. 
Estimated porosity (φ), specific surface area (s) and 
hydraulic diameter (DH) of the models generally agree 
with expected results. Both local porosity distribution 
density function and entropy function for wider spectrum 
of pore sizes is more fluctuated than the other two. The 
entropy lengths (L* ) are 15 and 14 for two models which 
consist four different pore sizes, respectively, 14 and 16 
for two models which consist two different pore sizes, 
respectively and 10 for the last two models which consist 
only one pore size.      
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