Electrical Conduction Theories & Conducting Materials (Part-A)

Outline:

- * Resistivity, TCR, and Matthiessen's rule
- * Classification of metals, insulators, and semiconductors
- * Free electron theory
- * Hall effect
- * Nordheim's rule

Resistivity & Temperature coefficient of resistivity (TCR)

Matthiessen's rule and TCR

Matthiessen's rule: the resistivity ρ of a pure metal is the sum of a residual part ρ_r and a thermal part ρ_t .

$$\rho_{(total)} = \rho_r + \rho_t$$

Matthiessen's rule and TCR

$$\rho_{(total)} = \rho_r + \rho_t$$

$$\rho_{(total)} = \rho_r \left(1 + \frac{\rho_t}{\rho_r} \right)$$

$$\frac{\rho_t}{\rho_r} = f(T)$$

$$\rho_{(total)} = \rho_r \left[1 + f(T) \right]$$

For most metals and alloys, ρ is approximately proportional to temperature T,

$$\rho_{(total)} = \rho_o (1 + \alpha \Delta T)$$

Temperature coefficient of resistivity (TCR)

Effect of temperature on resistivity of selected metals

	Material	$(\Omega \stackrel{\rho}{m})$	TCR (%/K)
Conducting materials	Silver	1.6 × 10 ⁻⁸	+ 0.41
	Copper	1.7×10^{-8}	+ 0.43
	Aluminium	2.7×10^{-8}	+ 0.43
	Sodium	5.0×10^{-8}	+ 0.4
(Tungsten	5.7×10^{-8}	+ 0.45
Heating / elements	Iron	9.7×10^{-8}	+ 0.5
	Platinum	10.5×10^{-8}	+ 0.39
	Tantalum	13.5×10^{-8}	+ 0.38
	Manganin (87Cul3Mn)	38×10^{-8}	+ 0.001
	Constantan (57CU43Ni)	49×10^{-8}	÷ 0.002
	Nichrome (80Ni20Cr)	112×10^{-8}	+ 0.0085
	SiC, commercial	$1-2 \times 10^{-6}$	- 0.15
	Graphite, commercial	$c. 1 \times 10^{-5}$	- 0.07
Semi- conductors	InAs, very pure	3×10^{-3}	- 1.7
	Tellur'um, very pure	4×10^{-3}	- 2
	Germanium, diode grade	1×10^{-3}	+ 0.4
	Germanium, very pure	5×10^{-1}	- 4
	Silicon, transistor grade	1×10^{-1}	+ 0.8
	Silicon, very pure	1×10^{-3}	- 7
	_Anthracene	3	- 10
Insulators	Selenium, amorphous	$c. 1 \times 10^{10}$	- 15
	Silica	$c. 1 \times 10^{13}$	negative
	Alumina	c. 1×10^{14}	negative
	Sulphur	c. 1×10^{15}	negative
	PTFE	c. 1×10^{16}	negative

Table 2.1 Resistivities and TCRs at 293 K

Drude's free electron theory (1900)

Electrons, treated as particles with certain mass and electric charge, move through the metal lattice freely and obey Newton's laws of motion and Maxwell-Boltzmann statistics

Paul Drude (1863-1906)

Drude's free electron theory

when an electric field E is applied to a metal, the force acting on an electron is:

$$F = -eE$$

According to the 2nd Newton's Law:

$$a = F/m = -eE/m = 1.75 \times 10^{11} E$$
Acceleration Mass of an electron, 9.1×10⁻³¹kg

In a time τ , the velocity v_d of the electron will be:

$$v_d = a\tau$$

$$\downarrow$$
Drift velocity

$$v_d = -eE\tau/m$$

$$\mu = e\tau/m$$

Mobility of electron, or drift velocity in unit electrical field

Considering a unit volume of a conductor containing n free electron, the charge crossing unit area in unit time must be $-nev_d$, which is the **current density** J:

$$J = -nev_d = ne^2 E \tau / m$$

or

$$J = \sigma E$$

$$\sigma = ne^2 \tau / m = ne\mu$$

Conductivity of a metal, proportional to mobility and free electron density

$$E = \frac{V}{l}$$

$$R = \rho \times \frac{l}{A}$$

Since

$$J = \sigma E = \frac{E}{\rho} = \frac{V}{\rho l}$$

We get

$$J = \frac{V}{RA}$$

$$JA = I = \frac{V}{R} \longrightarrow \text{Ohm's law}$$

Mean free path

The average distance travelled by an electron between collisions:

$$l_m = \tau v$$
 Time between two collisions Average velocity of electron, $v = v_{th} + v_d$

Since:

$$v_{th} \phi \phi v_d$$
$$\tau = \mu m / e$$

We get:

$$l_m = \mu m v_{th} / e$$

Typically, $\tau = 10^{-14} \sim 10^{-15} \text{Sec}$, electron concentration = $10^{28} / \text{m}^3$, therefore:

$$\sigma = ne^2 \tau / m = 0.3 - 3 \times 10^6 / (\Omega \cdot m)$$

Edwin Hall (1855-1938)

Electrons moving in a magnetic field are subjected to the **Lorenz force**, *F*:

$$F = -ev \times B$$

Instantaneous velocity of electron

Magnetic induction

The electrons move upwards to accumulate and produce a field, E_H , Hall field, which acts on the electrons as to oppose the Lorenz force;

$$eE_{H} = evB$$

Since:

$$v = v_{th} + v_d$$

$$v_{th} \approx 0 \longrightarrow E_H = v_d B$$

We get:

$$E_H = \mu EB$$

Also, since:

$$v_d = -J/ne$$

We then have:

then have:
$$E_{H} = \begin{pmatrix} -1/ne \end{pmatrix} JB$$

$$R_{H}, \text{ Hall constant} \qquad R_{H} = \frac{E_{H}}{JE}$$

$R_H ne$ values for some metals

Metal	R _H ne
Li	-1.15
Na	-1.05
K	-1.08
Rb	-1.05
Cs	-1.04
Cu	-0.68
Ag	-0.8
Au	-0.69
Pd	-0.73
Pt	-0.21
Cd	+0.5
W	+1.2
Be	+5.0

Resistivity of alloys

Impurity increases the residual part ρ_r of $\rho_{(total)}$.

$$\rho_r(x) = Ax(1-x)$$
 Nordheim's rule

Solution resistivity coefficient Concentration of the impurity

When $x \le 1$, $1 - x \approx 1$, then we have:

$$\rho_r = Ax$$

Effects of small additions of various elements on the resistivity of Cu at 293K

Example: Calculation of Mobility and Drift Velocity

Cu is the most important conducting metal. There is one valance electron per Cu atom. Cu has a *fcc* crystal structure with 4 atoms in a unit cell, a lattice parameter of 0.360 nm, and resistivity of $1.7 \times 10^{-8} \,\Omega m$. Assuming valance electron = free electron

- (1) Calculate the mobility of electron in Cu.
- (2) A typical house wire 3 m long has a resistance R = 0.03 Ω and carries a current of 15 A. Calculate the drift velocity of an electron in the wire.
- (3) Calculate the time τ between two collisions of electron.
- (4) Assuming the thermal velocity of an electron is ~10⁵ m/s, calculate the mean free path of an electron in Cu wire.
- 1. $\mu = \sigma/(n e) = 1/(\rho n e)$
- $v_d = \mu E$
- $v_d = -e E τ/m$
- $I_m = \tau v_{th}$