
2D NMR spectroscopy2D NMR spectroscopy

• So far we have been dealing with multiple pulses but a single
dimension - that is, 1D spectra. We have seen, however, that
a multiple pulse sequence can give different spectra which
depend on the delay times we use.

• The ‘basic’ 2D spectrum would involve repeating a multiple
pulse 1D sequence with a systematic variation of the delay
time tD, and then plotting everything stacked. A very simple 
example would be varying the time before acquisition (DE):

tD1

• We now have two time domains, one that appears during
the  acquisition as usual, and one that originates from the
variable delay.
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2D NMR basics2D NMR basics

• There is some renaming that we need to do to be more in 
synch with the literature:

• The first perturbation of the system (pulse) will now
be called the preparation of the spin system.

• The variable tD is renamed the evolution time, t1.

• We have a mixing event, in which information from one
part of the spin system is relayed to other parts.

• Finally, we have an acquisition period (t2) as with all
1D experiments.1D experiments.

• Schematically, we can draw it like this:

• t1 is the variable delay time, and t2 is the normal acquisition
time. We can envision having f1 and f2, for both frequencies…

• We’ll see that this format is basically the same for all 2D
experiments (and nD, for that matter...).

Preparation Evolution Acquisition

t1 t2

Mixing



A rudimentary 2D experimentA rudimentary 2D experiment

• We’ll see how it works with the backbone of what will
become the COSY pulse sequence. Think of this pulses,
were t1 is the preparation time:

• We’ll analyze it for an off-resonance (ωωωωo) singlet for a bunch
of different t1 values. Starting after the first ππππ / 2 pulse:
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The rudimentary 2D (continued)The rudimentary 2D (continued)
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• The second ππππ / 2 pulse acts only on the y axis component of
the magnetization of the <xy> plane.

• The x axis component is not affected, but its amplitude will
depend on the frequency of the line.

A(t1) = Ao * cos(ωωωωo * t1 )
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The rudimentary 2D (…)The rudimentary 2D (…)

• If we plot all the spectra in a stacked plot, we get:

ωωωωo

t1
t1

A(t1)

• Now, we have frequency data in one axis (f2, which came 
from t2), and time domain data in the other (t1).

• Since the variation of the amplitude in the t1 domain is also
periodic, we can build a pseudo FID if we look at the points
for each of the frequencies or lines in f2.

• One thing that we are overlooking here is that during all the
pulsing and waiting and pulsing, the signal will also be
affected by T1 and T2 relaxation. 

ωωωωo

f2 (t2)



The rudimentary 2D (…)The rudimentary 2D (…)

• Now we have FIDs in t1, so we can do a second Fourier
transformation in the t1 domain (the first one was in the t2
domain), and obtain a two-dimensional spectrum:

• We have a cross-peak
where the two lines
intercept in the 2D map,
in this case on the 
diagonal.

ωωωωo

ωωωωo

f
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• If we had a real spectrum with a lot of signals it would be a 
royal mess. We look it from above, and draw it as a contour
plot. We chop all the peaks with planes at different heights.

• Each slice is color-coded
depending on the height
of the peak.
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The same with some real dataThe same with some real data

• This is data from a COSY of
pulegone...
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The same with some real dataThe same with some real data

• Now the contour-plot showing all the cross-peaks:

• OK, were the heck did all the off-diagonal peaks came from,
and what do they mean?

• I’ll do the best I can to explain it, but again, there will be
several black-box events. We really need a mathematical
description to explain COSY rigorously.
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f1



Homonuclear correlation Homonuclear correlation -- COSYCOSY

• COSY stands for COrrelation SpectroscopY, and for this 
particular case in which we are dealing with homonuclear
couplings, homonuclear correlation spectroscopy.

• In our development of the 2D idea we considered an isolated
spin not coupled to any other spin. Obviously, this is not really
useful.

• What COSY is good for is to tell which spin is connected to
which other spin. The off-diagonal peaks are this, and they
indicate that those two peaks in the diagonal are coupled.

• With this basic idea we’ll try to see the effect of the COSY
90 t 90 t90y - t1- 90y - t1 pulse sequence on a pair of coupled spins. If
we recall the 2 spin-system energy diagram:

• We see that if we are looking at I and apply both ππππ / 2 pulses,
(a pseudo ππππ pulse) we will invert some of the population of
spin S, and this will have an effect on I (polarization transfer).
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Homonuclear correlation (continued)Homonuclear correlation (continued)

• Since the I to S or S to I polarization transfers are the
same, we’ll explain it for I to S and assume we get the same
for S to I. We first perturb I and analyze what happens to S.

• After the first ππππ / 2, we have the two I vectors in the x axis, 
one moving at ωωωωI + J / 2 and the other at ωωωωI - J / 2. The effect
of the second pulse is that it will put the components of the
magnetization aligned with y on the -z axis, which means a 
partial inversion of the I populations.

• For t1 = 0, we have complete inversion of the I spins (it is a ππππ
pulse and the signal intensity of S does not change. For all
other times we will have a change on the S intensity thatother times we will have a change on the S intensity that
depends periodically on the resonance frequency of I.

• The variation of the population inversion for I depends on the
cosine (or sine) of its resonance frequency. Considering that
we are on-resonance with one of the lines and if t1 = 1 / 4 J:
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Homonuclear correlation (…)Homonuclear correlation (…)

• If we do it really general (nothing on-resonance), we would
come to this relationship for the change of the S signal (after
the ππππ / 2 pulse) as a function of the I resonance frequency
and JIS coupling:

AS(t1,t2) = Ao * sin( ωωωωI * t1 ) * sin (JIS * t1 ) 

* sin( ωωωωS * t2 ) * sin (JIS * t2 ) 

• After Fourier transformation on t1 and t2 , and considering
also the I spin, we get:

• This is the typical pattern for a doublet in a phase-sensitive
COSY. The sines make the signals dispersive in f1 and f2.

ωωωωI

ωωωωS
f1

ωωωωS ωωωωI

f2



Heteronuclear correlation Heteronuclear correlation -- HETCORHETCOR

• The COSY (or Jenner experiment) was one of the first 2D
experiments developed (1971), and is one of the most useful
2D sequences for structural elucidation. There are thousands
of variants and improvements (DQF-COSY, E-COSY, etc.).

• In a similar fashion we can perform a 2D experiment in which
we analyze heteronuclear connectivity, that is, which 1H is
connected to which 13C. This is called HETCOR, for HETero-
nuclear CORrelation spectroscopy.

• The pulse sequence in this case involves both 13C and 1H,
because we have to somehow label the intensities of the 13Cbecause we have to somehow label the intensities of the 13C
with what we do to the populations of 1H. The basic sequence
is as follows:

90

{1H}
1H:

13C:

90 90

t1



HETCOR (continued)HETCOR (continued)

• We first analyze what happens to the 1H proton (that is, we’ll
see how the 1H populations are affected), and then see how
the 13C signal is affected. For different t1 values we have:
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HETCOR (…)HETCOR (…)

• As was the case for COSY, we see that depending on the t1
time we use, we have a variation of the population inversion 
of the proton. We can clearly see that the amount of inversion
depends on the JCH coupling.

• Although we did it on-resonance for simplicity, we can easily
show that it will also depend on the 1H frequency (δδδδ).

• From what we know from SPI and INEPT, we can tell that the
periodic variation on the 1H population inversion will have
the same periodic effect on the polarization transfer to the
13C. In this case, the two-spin energy diagram is for 1H
and 13C:

• Now, since the intensity of the 13C signal that we detect on t2
is modulated by the frequency of the proton coupled to it, the
13C FID will have information on the 13C and 1H frequencies.
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HETCOR (…)HETCOR (…)

• Again, the intensity of the 13C lines will depend on the 1H
population inversion, thus on ωωωω1H. If we use a stacked plot for
different t1 times, we get:

• The intensity of the two
13C lines will vary with
the ωωωω1H and JCH between

t1 (ωωωω1H)

1H CH
+5 and -3 as it did in the
INEPT sequence.

• Mathematically, the intensity of one of the 13C lines from the
multiplet will be an equation that depends on ωωωω13C on t2 and
ωωωω1H on t1, as well as JCH on both time domains:

A13C(t1, t2) ∝∝∝∝ trig(ωωωω1Ht1) * trig(ωωωω13Ct2 ) * trig(JCHt1) * trig(JCHt2)

ωωωω13C f2 (t2)



HETCOR (…)HETCOR (…)

• Again, Fourier transformation on both time domains gives us
the 2D correlation spectrum, in this case as a contour plot:

ωωωω13C

ωωωω1H

f1

JCH

• The main difference in this case is that the 2D spectrum is
not symmetrical, because one axis has 13C frequencies and
the other 1H frequencies.

• Pretty cool. Now, we still have the JCH coupling splitting all
the signals of the 2D spectrum in little squares. The JCH are
in the 50 - 250 Hz range, so we can start having overlap of
cross-peaks from different CH spin systems.

• We’ll see how we can get rid of them without decoupling (if
we decouple we won’t see 1H to 13C polarization transfer…).

f2
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13C:

90 90

HETCOR with no JHETCOR with no JCHCH couplingcoupling

• The idea behind it is pretty much the same stuff we did with
the refocused INEPT experiment. 

180

t1 / 2 t1 / 2

{1H}
1H:

t1

• We use a 13C ππππ pulse to refocus 1H magnetization, and two
delays to to maximize polarization transfer from 1H to 13C
and to get refocusing of 13C vectors before decoupling.

• As in INEPT, the effectiveness of the transfer will depend on
the delay ∆∆∆∆ and the carbon type. We use an average value.

• We’ll analyze the case of a methine (CH) carbon...

∆∆∆∆1 ∆∆∆∆2



HETCOR with no JHETCOR with no JCHCH coupling (continued)coupling (continued)

• For a certain t1 value, the 1H magnetization behavior is:
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• Now, if we set ∆∆∆∆1 to 1 / 2J both 1H vectors will dephase by
by exactly 180 degrees in this period. This is when we have
maximum population inversion for this particular t1, and no
JCH effects:
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HETCOR with no JHETCOR with no JCHCH coupling (…)coupling (…)

• Now we look at the 13C magnetization. After the proton ππππ / 2
we will have the two 13C vectors separated in a 5/3 ratio on
the <z> axis. After the second delay ∆∆∆∆2 (set to 1 / 2J) they
will refocus and come together:

z

x

5

y 3

y

3 5

90

y

3
5

∆∆∆∆2

x x

• We can now decouple 1H because the 13C magnetization is
refocused. The 2D spectrum now has no JCH couplings (but
it still has the chemical shift information), and we just see a
single cross-peak where formed by the two chemical shifts:

ωωωω13C

ωωωω1H
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Long range HETCORLong range HETCOR

• The ∆∆∆∆1 and ∆∆∆∆2 delays are such that we maximize antiphase 
13C magnetization for 1JCH couplings. That is, ∆∆∆∆1 and ∆∆∆∆2 are 
in the 2 to 5 ms range (the average 1JCH is ~ 150 Hz, and the 
∆∆∆∆1 and ∆∆∆∆2 delays were 1 / 2J).

• This is fine to see CH correlations between carbons and 
protons which are directly attached (1JCH). Lets see what this 
means for camphor, which we discussed briefly in class:

H3C CH3

H

b

• An expansion of the HETCOR spectrum for carbons a and b
would look like:

H3C O

a

Hb

Ha

CbCa

f2 (13C)

f1
(1H)

Hc



Long range HETCOR (continued)Long range HETCOR (continued)

• The problem here is that both carbons a and b are pretty 
similar chemically and magnetically: From this data alone we 
would not be able to determine which one is which.

• It would be nice if we could somehow determine which of the 
two carbons is the one closer to the proton at Cc, because 
we would unambiguously assign these carbons in camphor:

H3C CH3

H

b c

Hb

Ha

• How can we do this? There is, in principle, a very simple 
experiment that relies on long-range CH couplings.

• Apart from 1JCH couplings, carbons and protons will show 
long-range couplings, which can be across two or three 
bonds (either 2JCH or 3JCH). Their values are a lot smaller 
than the direct couplings, but are still considerably large, in 
the order of 5 to 20 Hz.

• Now, how can we twitch the HETCOR pulse sequence to 
show us nuclei correlated through long-range couplings?

H3C O
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CbCa
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Long range HETCOR (…)Long range HETCOR (…)

• The key is to understand what the different delays in the 
pulse sequence do, particularly the ∆∆∆∆1 and ∆∆∆∆2 delays. These 
were used to refocus antiphase 13C magnetization. For the 
1H part of the sequence:

• For the 13C part:

x

y

ββββ αααα

z

x

ββββ

y αααα

∆∆∆∆1 90

• For the 13C part:

• In order to get refocusing, i.e., to get the ‘-3’ and the ‘+5’ 
vectors aligned, and in the case of a methine (CH), the ∆∆∆∆1
and ∆∆∆∆2 delays have to be 1 / 2 * 1JCH. So, what would 
happen if we set the ∆∆∆∆1 and ∆∆∆∆2 delays to 1 / 2 * 2JCH?
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Long range HETCOR (…)Long range HETCOR (…)

• To begin with, ∆∆∆∆1 and ∆∆∆∆2 will be in the order of 50 ms instead 
of 5 ms, which is much longer than before. What will happen 
now is that antiphase 13C magnetization due to 1JCH
couplings will not refocus, and will tend to cancel out. For the 
1H part of the refocusing:
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• The delay values are now way of the mark for 1JCH, and we 
do not have complete inversion of the 1H populations. Now, 
for the 13C part:

• At the time we decouple 1H, we will almost kill all the 13C 
signal that evolved under the effect of 1JCH…
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Long range HETCOR (…)Long range HETCOR (…)

• In the end, we’ll se that most of the magnetization that 
evolved under the effect of different 1JCHs will be wiped out. 
On the other hand, 13C antiphase magnetization that 
originated due to 2JCHwill have the right ∆∆∆∆1 and ∆∆∆∆2 delays, 
so it will behave as we saw before. For 1H:
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• For 13C:

• So in the end, only 13C that have 2JCH couplings will give 
rise to correlations in our HETCOR and we will be able to 
achieve what we wanted
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Long range HETCOR (…)Long range HETCOR (…)

• If we take our HETCOR using this values for ∆∆∆∆1 and ∆∆∆∆2 , and 
if we consider everything working in our favor, we get:

• Great. We can now see our long-range 1H-13C coupling, and 
we can now determine which CH carbon is which in 
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H3C CH3

O

H
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b c

we can now determine which CH2 carbon is which in 
camphor. Note that we did the whole explanation for CHs for 
simplicity, but the picture is pretty much the same for CH2s.

• As usual, things never go the way we want. This sequence 
has several drawbacks. First, selecting the right ∆∆∆∆1 and ∆∆∆∆2 to 
see 2JCH over 1JCH is kind of a crap-shot.

• Second, we are now talking of pretty long delays ∆∆∆∆1 and ∆∆∆∆2
on top of the variable evolution delay (which is usually in the 
order of 10 to 20 ms). We will have a lot of relaxation, not 
only of the 13C but of the 1H, during this time, and our signal 
will be pretty weak.

• Furthermore, since 1H relaxes considerably, the inversion will 
vanish away and we don’t get strong correlations.



COLOCCOLOC--HETCORHETCOR

• How can we avoid these problems? If we want to keep the 
idea we have been using, i.e., to refocus 13C magentization 
associated with 2JCH, we need to keep the ∆∆∆∆1 and ∆∆∆∆2 delays.

• Then the only delay that we could, in principle, make shorter 
is the variable evolution delay, t1. How do we do this, if we 
need this delay to vary from experiment to experiment to get 
the second dimension?

• The solution is to perform a constant time experiment. This 
involves to have an evolution time t1 that is overall constant, 
and equal to ∆∆∆∆1, but have the pulses inside the evolution 
progress during this time. The best example of such a pulse progress during this time. The best example of such a pulse 
sequence is called COrrelations via LOng-range 
Couplings, or COLOC. The pulse sequence is:

90

{1H}
1H:

13C:

90 90

∆∆∆∆2

180

t1 / 2 ∆∆∆∆1 - t1 / 2

t1 / 2 ∆∆∆∆1 - t1 / 2

∆∆∆∆2

180

∆∆∆∆1



COLOCCOLOC--HETCOR (continued)HETCOR (continued)

• As you see from the pulse sequence, the ∆∆∆∆1 period remains 
the same, as so does the total t1 period. However, we 
achieve the evolution in t1 by shifting the two 180 pulses 
through the t1 period constantly from one experiment to the 
other.

• We can analyze how this pulse sequence works in the same 
way we saw how the regular HETCOR works. We’ll see the 
analysis for a C-C-H. The first 1H 90 puts 1H magnetization 
in the <xy> plane, were it evolves under the effect of JCH
(2JCH in the case of C-C-H) for a period t1 / 2, which is 
variable.variable.

• �The combination of 180 pulses in 1H and 13C inverts the the 
1H magnetization and flips the labels of the 1H vectors:
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COLOCCOLOC--HETCOR (...)HETCOR (...)

• Now, after ∆∆∆∆1 - t1 / 2, the magnetization continues to 
dephase. However, since the total time is ∆∆∆∆1, we will get the 
complete inversion of 1H magnetization, we have the 

�maximum polarization transfer from 1H to 13C, and we tag 
the 13C magnetization with the 1H frequency (which gives us 
the correlation…).

• Since we always have complete inversion of 1H 
magentization and refocusing, we won’t have 2JCH spliting in 
the 13C dimension (f1).

• Finally, over the ∆∆∆∆2 delay we have refocusing of the 13C 
antiphase magnetization, just as in the refocused HETCOR, 
and we can decouple protons during acquisition:and we can decouple protons during acquisition:

• The main advantage of this pulse sequence over HETCOR is 
that we accomplish the same but in a much shorter time, 
because the ∆∆∆∆1 period is included in the t1 evolution. 
Furthermore, instead of increasing t1 from experiment to 
experiment, we change the relative position of the 180 pulses 
to achieve the polarization transfer and frequency labeling.
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