
Investigating a mass-on-spring oscillator  

Demonstration 

A mass suspended on a spring will oscillate after being displaced. The period of 
oscillation is affected by the amount of mass and the stiffness of the spring. This 
experiment allows the period, displacement, velocity and acceleration to be investigated 
by datalogging the output from a motion sensor. It is an example of simple harmonic 
motion. 

Apparatus and materials 

 

• Motion sensor, interface and computer  
• Slotted masses on holder, 100 g - 400 g  
• Clamp and stand  
• String  
• Springs, 3  
• Card  

Technical notes 

 
Suspend the spring from a clamp and attach a mass to the free end. Adjust the height of 
the clamp so that the mass is about 30 cm above the motion sensor which faces upwards.  
  
The clarity of measurements depends upon the choice of spring stiffness and mass. Good 



results can be obtained with three springs linked in series, and masses in the range 100 - 
400 g. With this choice, it is necessary to place the sensor on the floor and allow the mass 
and spring to overhang the edge of the bench.  
  
When the mass is displaced and released, its vertical motion is monitored by a motion 
sensor connected via an interface to a computer.  
In general, the magnitude of the initial displacement should not exceed the extension of 
the spring. It is best to lift the mass to displace it, rather than pull it down.  
  
The mass may acquire a pendulum type of motion from side to side. Eliminate this by 
suspending the spring from a piece of string up to 30 cm.  
  
For the collection and analysis of the data, data-logging software is required to run on the 
computer. Configure the program to measure the distance of the mass from the sensor , 
and to present the results as a graph of distance against time. Scale the vertical axis of the 
graph to match the amplitude of oscillation.  

Safety 

Unless the stand is very heavy, use a G-clamp to anchor it to the bench. 

 

Procedure 

Data collection  
a Lift and release a 400 g mass to start the oscillation. Start the data-logging software and 
observe the graph for about 10 seconds.  
  
b Before the oscillation dies away, restart the data-logging software and collect another 
set of data which can be overlaid on the first set.  
  
c Repeat the experiment with 300 g, 200 g and 100 g masses.  
  
Analysis  
Measurement of period  
d The period of the sinusoidal graph may be measured using a time interval analysis tool 
in the software. Measure the period from peak to peak.  
  
e Take measurements at several different places on the time axis, and observe that the 
period does not vary with elapsed time.  
  
f Take similar measurements on the set of results with a smaller amplitude, and observe 
that the period appears to be independent of amplitude.  
  
Effect of mass  



g Measure the period for each of the other graphs resulting from using different masses. 
Plot a new graph of period against mass. (Y axis: period; X axis: mass).  
  
h Use a curve-matching tool to identify the algebraic form of the relationship. This is 
usually of the form ‘period is proportional to the square root of mass’.  
  
i Use the program to calculate a new column of data representing the square of the 
period. Plot this against mass on a new graph. A straight line is the usual result, showing 
that the period squared is proportional to the mass.  
  
Velocity and acceleration  
j  On the ‘distance vs. time’ graph, the gradient at any point represents the velocity of the 
oscillating mass. Choose the clearest set of data and use the program to calculate the 
gradient at every point on the graph.  
  
A plot of the resulting data shows a ‘velocity vs. time’ graph. Note that the new graph is 
also sinusoidal. However, compared with the ‘distance vs. time’ graph, there is a phase 
difference - the velocity is a maximum when the displacement is zero, and vice versa.  
  
k A similar gradient calculation based on the ‘velocity vs. time’ graph yields an 
‘acceleration vs. time’ graph. Comparing this with the original ‘distance vs. time’ graph 
shows a phase difference of 180°. This indicates that the acceleration is always opposite 
in direction to the displacement.  

 

Teaching notes 

1 This experiment illustrates the value of rapid collection and display of data in assisting 
thinking about the phenomenon under investigation. Data is collected within a few 
seconds and the graph is presented simultaneously. Students can observe connections 
between features on the graph and the actual motion of the mass. For example, the crests 
and troughs on the graph represent the mass at the extremes of its displacement.  
  
The parameters suggested here usually produce displacements of a few centimetres. The 
motion sensors can detect these with suitable precision. Small amplitude oscillations 
produce rather noisy data. Starting with the largest mass, shows the clearest results first.  
  
Software tools for taking readings from the graph are employed: measuring gradients and 
time intervals. The detail available in the data allows the idea that the periodic time 
remains constant for a given mass to be tested.  
  
2 A particularly useful software function is that which calculates the velocity for all 
points on the graph and plots these as a new graph. A notable feature of the velocity 
graph is the phase difference from the distance data. This can provoke useful discussion 
about the change in magnitude and direction of velocity during each cycle of oscillation. 



The ‘noisiness’ of the measurements begins to show more markedly on the velocity 
graph. The process by which the program calculates the velocity (usually by taking 
differences between distance readings) should be questioned.  
  
3 The further derivation of acceleration from the gradients of the velocity graph usually 
shows even more measurement noise. Nevertheless, the form of the graph convincingly 
shows the antiphase relation with the distance graph. This is useful for prompting 
discussion about the conditions for simple harmonic motion (SHM). This can be 
reinforced by plotting a further graph of acceleration against displacement. The negative 
gradient straight line supports the basic condition for SHM: acceleration is proportional 
to displacement, but in the opposite direction.  
  
Additional activities  
  
4 You could add a card to the bottom of the masses to increase the damping. Students can 
see if the presence or amount of damping affect the natural frequency. Secondly, the 
amplitude can be extracted from each peak and a damping curve plotted. This can be 
tested to see if it is exponential.  
  
This experiment was submitted by Laurence Rogers, Senior Lecturer in Education at 
Leicester University. 

Updated 12 May 2006 

http://www.practicalphysics.org/go/Experiment_220.html?topic_id=3&collection_id=52 
 
 
 

Datalogging SHM of a mass on a spring 

Demonstration or class experiment 

To demonstrate SHM of a mass on a spring and gather accurate data using a datalogger. 

Apparatus and materials 

Datalogger position sensor  
Slotted 50 g masses and hanger  
Expendable spring  
Card 

 

Technical notes 



Be careful to set the mass moving only vertically, not swinging side to side. Also many 
position sensors do not work if the object gets too close - be careful to maintain at least 
the minimum working distance at all times. 

Safety 

Masses hanging from ceiling. 

 

Procedure 

a Attach an expendable spring to the ceiling or a very high retort stand and hang a 50 g 
slotted mass hanger from it. Place a motion sensor underneath, pointing upwards. 
Displace the mass a small distance downwards. Position-time data can be recorded 
swiftly and easily.  
  
b The experiment can be repeated using different numbers of masses, springs in series 
and adding card to the bottom of the masses to increase the damping.  
  

 

Teaching notes 

If you have motion sensors this is much easier to set up than a pendulum attached to a 
rotary potentiometer.  
  
This can work at every level. Initially data can be recorded over a few cycles and used to 
find the period and hence the frequency. The effect of changing the mass, springs and 
damping is quickly measured and compared directly to theory.  
  
Position-time data can be analysed to see if it is sinusoidal and if the period is constant as 
the amplitude damps down. Also period being independent of initial amplitude can be 
checked.  
  
Velocity and acceleration-time graphs can be plotted by the computer and shown to have 
the same shape and period but different phase to the position-time graph.  
  
The damping can be investigated in various ways. Initially students can look and see if 
the presence or amount of damping effects the natural frequency. Secondly the amplitude 
can be extracted from each peak and a damping curve plotted. This can be tested to see if 
it is exponential.  
  
As the data is on a computer it can be exported to a spreadsheet or maths package and 
fitted to a sinusoidal form (with exponential damping if appropriate).  



  
This experiment was submitted by Ken Zetie, Head of Physics at St Paul's School in West 
London. He is on the editorial board of Physics Education and regularly contributes to 
Physics Review.  

Updated 21 Dec 2004 
http://www.practicalphysics.org/go/Experiment_209.html?topic_id=3&collection_id=52 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Feeling a force of 10 N 

Demonstration 

This is a fairly elementary demonstration, but it will help students to develop a ‘feel’ for 
a newton of force, together with the concept of field strength. 

Apparatus and materials 

 

• Mass, 1 kg  
• Mass, 2 kg  
• Forcemeter, 0-50 N  

Procedure 



 
a Get a student to hold a kilogram in one hand.  
  
b Ask, ‘Can you feel the force of the Earth pulling down on it?’ and ‘How big a force is 
it?’ If the student cannot answer the latter question, attach the mass to a forcemeter.  
  
c Prepare a table with 3 columns: label the first column ‘mass’ and the second column 
‘gravitational force on the mass’. Leave the third column unlabelled for the moment.  
  
d Complete the table for 2, 3, and 4 kg masses.  
  
e Now head the third column ‘force on a unit mass of 1 kilogram’ or ‘gravitational field 
strength’. Ask, ‘What is the force on one kilogram of each of the masses?’ Complete the 
third column together.  

 

Teaching notes 

1 Students may have heard the story of Newton 'discovering' gravity when an apple fell 
on his head as he sat thinking under an apple tree. The weight of an apple is about 1 
newton. Newton's remarkable thought about gravity is that the Moon too is falling.  
  
2 Students might find the question in part e puzzling because it is so obvious. They need 
only imagine the mass cut up into 1-kg lumps. The force on each kilogram is 10 N 
whether its mass comes in 1-kg lumps or 4-kg lumps. This is a very important 



demonstration because it leads to the concept of gravitational field strength. Its symbol is 
g and its units are N/kg.  
  
Physicists picture the gravitational field of force spreading out from the Earth with a 
‘readiness to pull’ another mass, radially, towards the centre of the Earth. There is no 
actual force at a place near the Earth until you put some stuff there for the field to pull on. 
The field is always there.  
  
3 The force F that acts on a mass m in a gravitational field is F = mg newtons. This is the 
weight of the body. When you hold an object and feel the pull of the Earth’s gravitational 
field on it, that object is not falling. It is not accelerating downwards with an acceleration 
g and it is therefore nonsense to talk of finding its weight by multiplying its mass by an 
acceleration, g. Here g represents the Earth’s field strength, 9.8 N/kg.  

Updated 15 Apr 2005 
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Investigating momentum during collisions  

Demonstration 

A moving glider on a linear air track collides with a stationary glider, thus giving it some 
momentum. This datalogging experiment explores the relationship between the 
momentum of the initially moving glider, and the momentum of both gliders after the 
collision.  

Apparatus and materials 

 

• Light gates, interface and computer, 2  
• Linear air track with two gliders, each fitted with a black card  



• Glider accessories: magnetic buffers, pin and plasticine  
• Clamps for light gates, 2  
• Electronic balance  

Technical notes 

Set up the linear air track in the usual manner, taking care to adjust it to be perfectly 
horizontal. A stationary glider should not drift in either direction when placed on the 
track.  
  
Select two air track gliders of equal mass. Attach to each a magnetic buffer at one end, 
and a black card in the middle.  
  
Prepare each card accurately to a width of 5.0 cm, and enter this value into the software.  
  
The mass of the gliders must also be measured and entered into the software to prepare 
for the calculations (see below). If magnets are not available, ‘crossed’ rubber band 
catapults are an acceptable alternative.  
  
Connect the light gates via an interface to a computer running data-logging software.  
  
The program should be configured to obtain measurements of momentum, derived from 
the interruptions of the light beams by the cards.  
  
The internal calculation within the program uses the interruption times from each light 
gate to obtain two velocities. These are multiplied by the appropriate glider masses to 
give two values of momentum, one before the collision, and one after. This assumes that 
the measurements for the width of the card and the masses of the gliders have been 
entered into the program correctly.  
  
For the elastic collision (first part), the momentum measured at A depends upon the mass 
of the moving glider only. The momentum measured at B depends upon the mass of the 
initially stationary glider only.  
  
For the inelastic collision (second part), the momentum measured at A depends upon the 
mass of the moving glider, whereas the momentum measured at B depends upon the 
combined mass of both gliders.  
  
Students accumulate a series of results in a table with two columns, showing the 
momentum before and after each collision. It is informative to display successive 



measurements on a simple bar chart.  

 

Safety 

The most significant hazard is that of setting up the linear air track on the bench, 
especially if it is stored on a high shelf. Two people may be needed to achieve this safely. 

 

Procedure 

Data collection  
  
Part 1 – Elastic Collisions  
a Position the light gates A and B either side of the midpoint of the track as shown.  
  
b Place one glider at the left hand end of the track, and the second between the light 
gates, with the magnetic buffers facing. The second glider should remain stationary.  
  
c Give the first glider a short push so that it passes through light gate A. It then collides 
with the stationary glider. This then moves and passes through light gate B. If necessary, 
adjust the positions of the light gates to make sure that the sequence is correct.  
  
(As the magnetic buffers approach each other they repel so that there is no real contact 
between the two gliders. This creates the condition for ‘elastic’ collisions.)  
  
d Return the gliders to their starting positions, set the software to record data, and repeat 
the sequence. Observe the measurements of momentum before and after the collision. 
Repeat this whole process several times to obtain measurements for a series of collisions.  



  
Part 2 – Inelastic collisions  
e Replace the magnetic buffers with a pin on one glider and a lump of Plasticine on the 
other. (This will cause the gliders to stick together after the collision, making it an 
‘inelastic’ collision.) The black card may be removed from the initially stationary glider.  
  
Reset the program so that the measurements at B use the combined mass of both gliders.  
  
f Use the same procedure as for Part 1 to obtain measurements for a series of inelastic 
collisions.  
  
Analysis  
g Depending upon the software, the results may be displayed on a bar chart as the 
experiment proceeds. Note the very similar values for momentum before and after each 
collision of either type.  
  
h The results can be displayed as a graph of 'momentum before collision' against 
'momentum after collision'. A straight line graph would demonstrate that the relationship 
does not depend upon the magnitude of the initial momentum. If the graph is at 45°, this 
confirms the conservation of momentum.  

 

Teaching notes 

1 This is a computer-assisted version of the classic experiment, using light gates and 
electronic timers. The great advantage of this version is the instant presentation of 
momentum values using the software. This avoids preoccupation with the calculation 
process and allows attention to focus on the results.  
  
2 It is unusual for the measured values of momentum before and after each collision to be 
identical. It is wise to limit the number of decimal places displayed, so that the 
discrepancy does not appear exaggerated. Note how small the discrepancy is, compared 
with the magnitude of each value. A bar chart display makes this comparison very plain 
to see. Thus it can be argued that momentum is conserved in each case.  
  
3 A discussion of the measurement errors must consider the residual friction affecting the 
motion of the gliders. Errors may be kept to a minimum by strategically placing the light 
gates so that they capture the motion as close as possible to before and after a collision.  
  
This experiment was submitted by Laurence Rogers, Senior Lecturer in Education at 
Leicester University.  

Updated 12 May 2006 
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Measuring the density of water 1 

Demonstration 

This could be a useful introduction to the idea of density of a liquid. 

Apparatus and materials 



 

• Perspex box with internal dimensions 10 cm x 10 cm x 11 cm  
• Domestic balance (2 kg to +/- 2 g is adequate)  
• Cube, 1 m x 1 m x 1 m (e.g. five squares of Corriflute, 1 m x 1 m, with L-shaped 

wire links for the vertical edges. The fifth square sits on the top - no base is 
needed.)  

Technical notes 

The Perspex box should have a horizontal line marked on one face, 10 cm from the 
internal base so it can be filled to that depth.  
  
The metre cube could be made out of cardboard, and could be collapsible for ease of 
storage.  

Procedure 

 
a Find the masses of the empty Perspex box and then the box filled to a depth of 10 cm.  
  
b Place the cardboard cube beside the Perspex box.  
  

 

Teaching notes 



1 Using cubes will help younger or weaker students make the link with densities found 
for blocks of solids. They may need reminding that 1000 cubic centimetres = 1 litre.  
  
2 Having found the mass of 1000 cubic centimetres of water, the metre cube can be used 
to help students see that the mass of a cubic metre of water would be 1000 times greater. 
Some may be familiar with the thought that the density of water is 1 g/cm3. This will help 
them see it cannot be 1 kilogram per cubic metre but rather 1000 kg/m3 !  
  
3 You could remind students that building materials like sand and gravel are sold in cubic 
metres and so have to be transported in strong sacks.  
  

Updated 11 Jul 2006 
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Measuring the density of air 1 

Demonstration 

This simple experiment gives a reasonable value for the density of air. 

Apparatus and materials 

 

• 1-litre flask, strong, round bottom  
• Vacuum pump, electronically operated rotary type  
• Top-pan chemical balance with a sensitivity of no less than 0.01 g  
• Measuring cylinder (1 litre capacity would be useful)  
• Bung, plastic tube and short length of rubber vacuum hose  
• Hoffman clip  
• Water trough  
• Safety screens  
• Cork ring (see technical notes)  

Technical notes 

The bung should fit the mouth of the flask snugly so that it is secure but unlikely to be 
forced into the flask when that is evacuated.  
  
The glass tube through the bung should be just long enough to allow the rubber tubing to 
be securely fitted. The rubber tube connecting the glass tube to the pump should be just 
long enough to give space for the clip to  



be used, before detaching the tube from the pump.  
  
A cork ring to support the flask in an upright position will help with the weighings.  
  
Avoid using a flask with a smaller volume. The mass of the air will be correspondingly 
more awkward to measure, and finding the density is more difficult.  

Safety 

Remember that vacuum pumps of this type are heavy. Two persons will probably be 
needed to move one from trolley to bench.  
  
Safety screens should surround the flask before it is evacuated. 

 

Procedure 

a Open the clip (making sure the rubber tube also opens). Weigh the flask, bung, clip, and 
tubes.  
  
b Connect the flask to the vacuum pump to remove as much air as possible from the 
flask. Tighten the clip and close any inlet valve on the pump. Stop the pump and detach 
the tubing from the pump inlet.  
  
c Weigh the flask again to find the mass of the air removed.  
  
d Invert the flask over water in the trough, so that the rubber tube remains under the 
water surface. Carefully open the clip to allow water to fill the flask (and tubes). Then 
empty the water into a measuring cylinder to find its volume. 

 

Teaching notes 

1 Seeing the water refill the flask is impressive. It also helps those who wonder whether 
the volume is indeed 1 litre. Even to those for whom it is self-evident that the flask has a 
volume of about 1 litre  
  
2 Getting students to realise that the mass of a litre of air is about 1 g, so that the mass of 
a cubic metre is about 1 kg, is no mean achievement. (Should they find the mass of the 
litre of air is nearer 1.2 grams that is a pleasant bonus.) Generally, they will be surprised 
that air is 'so heavy!’  
  
3 A useful extension is to estimate the volume of the room and hence the mass of the air 
it contains. This might lead to seeing why, living as we do at the bottom of an ocean of 



air, the pressure exerted by the atmosphere is so great. Comparing the density of air with 
that of water, can lead to a discussion of the hazards of descending into the depths of the 
sea.  
  
4 You could say:  
Returning to the calculation of the speed of air molecules, we can move forward another 
step. Air has a density of about 1.2 kg/m3, and water has a density of about 1 kg/litre. Air 
is therefore about 830 times less dense than water. The height of a column of water in a 
water barometer is about 10 m. If we had a uniform atmosphere of air, then it would have 
to have a height of 10 x 830 m; the height of the atmosphere would be 830 m or 8.3 km.  
  
However, the atmosphere is not of uniform density as can be demonstrated in the 3-D 
kinetic theory model which you may remember seeing, or we could look at it again. The 
story we are telling is an artificial, simplified one in order to arrive at an interesting 
guess. Desperate measures for desperate needs.  
  
Thanks to Neil Johnston for several suggestions that improved this experiment. 

Updated 30 Jan 2007 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A quick comparison of densities 

Demonstration 

This shows dramatic differences in the density of air, water and mercury. 



Apparatus and materials 

 

• Similar bottles, 3 (about 150 to 200 ml volume)  
• Domestic spring balance or a top pan balance (5 kg to +/- 2 g)  
• Mercury  
• Tray to hold the bottle filled with mercury  

Technical notes 

The bottles should be filled with air, water and mercury. All should be sealed securely 
and similarly. (Those sold as 'medical flats' are suitable.) 

Safety 

Take the usual care when using mercury, but, as it is in a sealed container, it presents 
minimal risk. 

 

Procedure 

 
  
a Find and record the masses of the three bottles.  



  
b Get the students to work out how much heavier the mercury is than the water, as a ratio.  

 

Teaching notes 

1 Before the weighings, discuss the purpose of the bottle filled with air. It leads to the 
assumption that the mass of air is negligible compared with the mass of the container. 
Hence the mass of water and mercury can be calculated.  
  
2 If possible, allow students to lift the bottle of mercury. (Insist that the bottle stays with 
its tray.) Their surprise at how heavy it feels will be memorable.  
  
3 The volumes of mercury and water are the same, so the ratio of their masses gives the 
ratio of their densities. The absolute density can be found if their volumes are measured.  
  
4 You could say:  
Returning to the calculation of the velocity of air molecules at the base of the atmosphere, 
we now know that the density of mercury is about 13.5 times as dense as water. So, a 
water atmosphere would have to be 13.5 times as high as the mercury height, 13.5 x 75 
cm; about 10 m.  
What about an atmosphere of air? Not air that gets thinner and thinner all the way up, but 
air that stays just as dense as it is here in this room?  
  
Now we are going to need a comparison of the density of water and the density of air. 
See the experiment Measuring the density of air 1. 

Updated 11 Jul 2006 
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Newton’s Laws of Motion   (last 

edited ) 
Dr. Larry Bortner 

Purpose 

To demonstrate and verify Newton’s laws of motion. 

 

Background 

Sir Isaac Newton was the first to present us with an objective means 
of predicting the motion of an object under the influence of some 

force.  

•   His first law tells us that any change in straight-line motion of an 
object requires a force.  

•   The second law quantifies the force and the change in motion and 
is summarized in the equation 

  

  (1) 

  

•   where is the resultant (net) force acting on an object of mass m 

and is the acceleration that results.  

•   The third law states that for two bodies interacting with each other 

but nothing else, any force that body number one exerts on the 

body number two must be accompanied by an equal force from 
body number two exerted on body number one in the opposite 
direction.  

 

There are a couple of items of information embedded in Eq. 1 that you 
should be aware of, which is also mentioned in the Vector Forces 
experiment: 

•   If there is no resultant force, the object will not accelerate (i.e., will 
either remain at rest or in uniform linear motion).  

•   It is a vector equation, indicating that and are in the same 

direction.  

In this experiment we use Eq. 1 to predict the motion of two different 
masses, each under the influence of two different forces at separate 
times. We then verify the predictions using an air track. 

 

An air track permits cars or gliders of various masses to move linearly 
along its length, and it offers very little frictional resistance to motion. 



This simplifies the determination of the resultant force on the car, 

which is the externally applied force minus frictional force. The air 
track is also equipped with a low friction air pulley. 

 

Theory, First Force: Gravitation on an Inclined Plane  

One way of applying an external force to a car on the air track is to 
raise one end of the track by putting an aluminum block or shim under 

the support at one end. This creates an inclined plane. The forces in 
this system are shown in Fig. 1, with an exaggerated angle. 

 

 
Figure 1 Force diagram of inclined plane. 

  

If the track of length L between the legs is raised at one end by a 

height h, then the angle of inclination is given by: 

  

  (2) 

 

Since the frictional force is negligible, the only force acting on the car 
is the gravitational force. The component of this force parallel to the 
track is given by: 

  

  (3) 



where m is the mass of the car and g=9.80 m/s2 is the acceleration due 
to gravity. Applying Eq. 1 to this system, we find: 

  

  (4) 

  

or the theoretical acceleration down the inclined plane is 

  

  (5) 

  

Note that the mass of the car does not appear in Eq. 5, indicating that 
the acceleration of an object on an frictionless inclined plane is 
independent of its mass. This is because the force exerted on the 
object (Eq. 3) is proportional to the mass of the object and the mass 

cancels from both sides of the equation in Eq. 4. 

 

Theory, Second Force: Tension from a Falling Mass  
  

 
Figure 2 Accelerating the car horizontally with a falling mass. 



Another method of applying an external force is by adding a known 

mass mdrop to the free end of a string that is attached to the car and 

runs over a pulley at one end of the track. This situation is pictured in 
Fig. 2. Assuming that the string is massless and that the friction over 

the pulley is negligible, the tension T on the string is the same 

throughout its length. (If it were not, consider what would happen to a 

section of the string somewhere near the middle. Address this scenario 

in your Conclusions.) T is the resultant force on m and pulls the glider 

along the track toward the pulley. Consequently, Eq. 1 applied to m is: 

  

  (6) 

 

Of course, the tension also acts on the dropping mass mdrop, its effect 

being to hold it up. In fact, the string’s tension clearly holds the two 

masses together, pulling each toward the other so that they go no 

further apart. The second force acting on mdrop is that due to gravity 

(=mdropg), pulling down. So the resultant force on mdrop is mdropg - T 
downwards. Since the string does not stretch, mdrop accelerates 

downwards with acceleration a. Therefore, Eq. 1 applied to mdrop is: 

  

  (7) 

  

Eliminating T between Eq’s. 6 and 7, we can calculate the acceleration 

of the car: 

  

  (8) 

 

Measuring Acceleration 
Looking at the theoretical predictions of Eqs. 5 and 8, we need to 
experimentally measure the acceleration of a car traveling along the 

air track in order to verify Newton’s Laws. The method we’re familiar 

with from the Falling Bodies experiment is to measure the time it takes 

for the car to travel various distances and plot velocity vs. time, with 
the calculated slope being the acceleration. However, in the spirit of 
investigation and expanding our horizons, we'll do it a different way. 

 
We use a different equation of motion for an object under a constant 
acceleration than we used previously. (It is important to note that 
these equations are independent of Newton's Laws.) If the car travels 



a distance x starting at rest, the square of the theoretical speed v at 
this point is 

  

    (9) 

  

A plot of v2 vs. 2x then gives the experimental acceleration. 

 

To find the experimental velocity, attach a flag of known length flag to 
the car. This flag interrupts the beam in a photogate when the car 

passes through it. The instantaneous velocity v of the car at the 
detector when the flag is halfway through is the average velocity over 

the total time t that the beam was broken,  

  

  (10) 

  

The direction of both types of forces we're investigating are going to 

the right as you’re facing the air track. A photogate is set up at the 

right end of the track. To determine the distance traveled x, we need 

the initial and final positions of the car. The initial position is simple 
enough. Where the car breaks the photogate beam determines the 

final position. 

 

Define x1 as the position of the car as it goes through the photogate from left to right, 
when the flag first interrupts the photobeam (the timer starts timing). 
Define x2 as the position of the car as it goes through the photogate from left to right, 
when the flag first stops interrupting the photobeam (the timer stops timing). 

 

 
  

The position of the car when it has the velocity v in Eq. 10 is the 

average of the positions when it enters the photogate (x1) when it 

leaves (x2).  

  

Measure the position of the glider where its left edge aligns with the 

metric ruler that is set in the air track. Note that the positions x1 and 

x2 are different for each car but are the same for both forces acting 

on a single car. 

  

Assume that a car starts at zero velocity at the initial position x0 
(measured from the left edge!) and accelerates through the 



photogate. Double the distance traveled by the glider to where the 

flag is halfway through the photogate is 

  

    

The error in this calculation is 

  

  (12) 

  

Procedure 

You need the following equipment: 

►   air track 

►   photogate 

►   digital calipers 

►   metric tape measure 

►   2 cars (gliders) of unequal mass with flags (aluminum inserts on 

top) 

►   3 binder clips 

►   piece of string with tied loops at both ends 

►   various aluminum blocks 

►   triple beam balance 

►   Computer with Science WorkShop interface 
 
Note: never mark the surface of the air track! Even the thinnest layer 
of ink or graphite significantly adds to the friction. Scratching the 

surface disrupts the air flow, which can slow things down. 
 
Basic Measurements 
1.  The photogate should be just to the right of the crossbar at the 

right end of the air track. 

     a.  For each car, measure the positions x1 and x2 in meters (not 
millimeters, not centimeters), always with the car side marked 
with an X facing out. Again, this is where the car first causes 

the timer to start, then where the timing first stops after you 
slide the car through the photogate. 

     b.  The numbering on the rule on the track can be confusing. 
There are little 1m’s and 2m’s at strategic locations meaning 



that the position is one or two meters plus the millimeters or 

centimeters that you are reading. 

     c.  Do not move the photogate during the experiment. The value 

of x1 for each car should be the same for the second force as 

for the first force. 

2.  Measure and record the masses of your two cars, with flags 

attached and with a clip on the flag. 

3.  Press the mm/in  button to turn on the digital calipers display. 

     a.  With the caliper jaws closed, press the 0 button to get a zero 
display. 

4.  Choose a number (1-5) of aluminum blocks to place under the 
single foot at the left end of the track. This raises that end a 

distance h. Measure h ( the thickness of the blocks stacked 
together) with the calipers and record this number.  

5.  Using the tape measure, measure and record the distance L 
between supports of the air track (where it touches the table; 

refer to Fig. 1). Record your estimated uncertainty. 

6.  Turn on the air and make sure the track is level. A glider will drift 
a little back and forth on a level track. Consult your TA if the glider 

accelerates to one end. Do not attempt to adjust the air track 
yourself. 

7.  Place the blocks under the left end support of the track. 

8.  Click on Start> Science Workshop> First Quarter> Newton’s La ws 
timer  to start the DataStudio program. 

     a.  Click on the Start button to start the timer. 

     b.  Leave it running for the rest of the experiment. It automatically 
resets, displaying the last time that the photobeam was 

interrupted. 
 
Experiment, First Force: Gravitation on an Inclined Plane  
9.  Position the left edge of the small car at the 2.150 m mark. This 

gives you a distance of a few centimeters to the photosensor. This 

is your first initial position (release point) x0.  
     a.  Record this position in meters. (The air track is over 2½ meters 

long. As noted previously, the whole number of meters on the 
rule is not as prominent as the centimeter numbers. Don’t miss 
this number.)  

     b.  Release the car. Be careful not to impart any sideways 
movement or bounce to the car, as this would cause the car to 

touch the track and introduce friction. 

10. Stop the car before it goes back through the photogate. Record 
the displayed time. 



11. Repeat the timing procedure in Steps 9 and 10 nine more times 

for the same starting position x0. The standard deviation u{t} of 
the ten times for this distance is the estimated absolute error for 
all subsequent measured times in this experiment. 

12. Make single time measurements for seven more different release 

points spread out over the length of the air track. One of 
these release points should be at the extreme left of the track 

where the car bumper is still not touching anything. The points 
should be about 30 centimeters apart. This gives you eight total 

release/time points. 

13. Switch to the other car and choose eight different release points. 
Record these positions and measure and record the times (single 

measurements). 
 
Experiment, Second Force: Tension from a Falling Mass  
14. Turn off the blower and remove the aluminum blocks from under 

the air track. 

15. Place one of the cars at the end of the track near the pulley. 

16. Measure the mass of the binder clip mdrop that will be used to 

accelerate the cars. Remove the string first if it is attached. 

17. Open the clip and clip it on (through) one of the string loops. 

18. Remove the clip that is on the glider flag and clip it on the other 
loop of the string. Reattach the clip to the flag and run the string 

over the pulley so the accelerating mass is hanging freely. 

19. Choose eight different release points spread out evenly over the 
extent of movement (should be about 12.5 cm apart). Measure 

the time it takes to accelerate through the photogate from each of 
these points. 

20. Repeat this for the other car, using the same release points. 
 

Analysis 

1.   Click on Start> Templates> First Quarter> Newton’s Laws to load the 

Excel template. 

Data Entry 
2.   Enter in the following: 

     a.   the values of h and L and their uncertainties 

     b.   the uncertainty u{x} in a car position, 

     c.   the beam-breaking positions x1 and x2 for both cars. 
3.   For the small car, enter in the starting position and the ten times 

you measured in Steps 9-11 of the Procedure. 



4.   Enter in the eight pairs of position and time points for both cars 

for the first force. 

5.   For the second force, enter in the masses and the eight pairs of 
position and time points for both cars. 

Calculations and Comparisons 
6.   Convert data in millimeters to meters. 

7.   Calculate the theoretical acceleration on the inclined plane from 
Eq. 5.  

     a.   Calculate the error of this value from 

  

    

  

8.   Determine the uncertainty u{2x} from Eq. 12. 

9.   Calculate the average time and the standard deviation u{t} for the 
ten times of the small car at the same release point. 

10. Calculate the flag length and its uncertainty for both cars. 

11. Put formulas for 2x (Eq. 11), the experimental speed squared (v2 

using Eq. 10, not Eq. 9), u{v2}, v2+u{v2}, and v2-u{v2} in H4, I4, J4, 
K4, and L4. Be sure to use absolute cell references where 

appropriate because these formulas are going to be copied. The 

expression for u{v2} is 
  

 
        

     a.   Highlight these five cells and copy them. 

     b.   Click in H19 and paste. All five formulas should be copied to 

the first row of the big car data and calculations done for the 

first starting position and its time. The formulas have to be 
corrected but we'll do that in Step 10e. 

     c.   Click in H52 and paste. Again, three numbers appear, but these 

are the correct calculations. 

     d.   Before clicking anywhere else, click on the lower right corner 
of the three cell selection, drag down to J59, and release. 
You've just done the calculations for the small car for the 
second force. 

     e.   Return to H19 and correct the formulas in this row as needed. 

     f.   Select the five cells with formulas in that row and copy them. 



     g.   Go to H66 and paste.                                                
     h.   Copy these cells down to row 73. If you scroll down, you'll find 

that the v2 vs. 2x data has been plotted for the second force. 
You should have two different lines. 

     i.    Copy the cells down for the small car and the big car for the 
first force. 

12. Although the plots are automatic, you still have to add the error 

bars. The X Error Bar of u{2x} is a single Fixed value: for both plots. 

The u{v2} values have to be entered as Custom (+ and -). 
13. These graphs should be straight lines, since v2=2ax. The slopes of 

these lines are the corresponding accelerations.  

     a.  Find the least squares slopes aexp+ and aexp- of v
2+u{v2} vs. 2x 

and v2-u{v2} vs. 2x. You need just the slope, nothing else. This 
is one of the few times where you can use LINEST without 
adding the 1 and 1 at the end and hitting Shift/Control/Enter . 

     b.  Find the average of these two slopes for the experimental value 

of a. 

     c.  The standard error of these two values is u{aexp}. 
14. Copy the four formulas. Paste into cells G29, G62, and G76. You 

have just finished the similar calculations for the other three data 
sets. 

15. Are the accelerations of the two cars due to the first force equal to 
within the accuracy of the experiment? 

16. Compare both of these accelerations separately to the theoretical 

value of an object on an inclined plane. 

17. For the second force, calculate the theoretical acceleration for 
both cars from Eq. 8 and compare to your experimental values 

from the least squares fit. Use the following expression for the 
uncertainty of the theoretical acceleration due to the second 

force: 

  

      

Questions 
1.   If the string used to connect the small weight to the car in Part 2 

had appreciable mass, would the car still undergo uniform 
acceleration? Explain. 

2.   The experimental value of the acceleration depends differently on 
the mass of the car for the first force than it does for the second 
force. Explain how this difference comes about. 



http://www.physics.uc.edu/~bortner/labs/Physics%201%20experime

nts/Newton's%20Laws%20of%20Motion/Newton's%20Laws%20o
f%20Motion%20htm.htm 

 


