Artificial Neural Network
In Matlab

Waslaluddin

Architecture (single neuron)
N Y

]
)

ﬁ:;

1L

LS N /

w IS weight matrices, dimension 1xR
p is input vector, dimension Rx1

b is bias

a=f(Wp + b)

Transfer Function

i ol
@ = hardlimin) @ = purelinin)
Hard-Limit Transfer Function Linear Transfer Function

a = logsioin)

Log-Sigmoid Transfer Function

Architecture with neurons

Input Layer of Neurons

]

Where. .

R = number of
alements in
input vector

e 8
I.. =

& = number of
neurcns in layer

T LR}
.
- Eww
]

a=fF(Wp+h)
w Is weight matrices, dimension SxR
p is input vector, dimension Rxn

b is bias

Multiple layers

Input Layer 1 Layer 3
f N/ A
FETRR !

P A

I
P, e i
s b .:
P o .”

|'!-'|_‘;I

I
S\

ar = 1 {IWup +h) a2 = [Z{LW21a1 +h2) as =13 (LW az +)

as =1 (LW 22 (LWzi i IWup +b1)+ b2y bs)

Perceptrons in Matlab

Make the perceptrons with net = newp(PR, S, TF, LF)
PR = Rx2 matrix of min and max values for R input elements

S = number of output vector
TF = Transfer function, default = ‘*hardlim’, other option = ‘hardlims’

LF = Learning function, default = ‘learnp’, other option = ‘learnpn’

hardlim = hardlimit function

hardlims = symetric hardlimit function

learnp 2> Aw = (t-a)p"=ep”
learnpn - normalized learnp

W = Wy,q + AW Prew = Doig + € wheree =t-a

new

Compute manually...

his IS an exercise how to run the artificial
neural network

From the next problem, we will compute
the weights and biases manually

&, L

AND Gate In Perceptron

Performance is 0, Goal is 0

P=[0011, 010 1];
T=[000 1]; 0.9-
0.8-
net = newp([0 1; 0 1],1); « 07L
weight init = net.lW1, 1} £
bias init = net.b{1} g
o 0.5-
net.trai nParam epochs = 20; E»o.m
net = train(net,P, T); g s
wei ght final = net.I1 W1, 1} "
bias final = net.b{1}
si mul ation = sin(net, P) O47
e

6 Epochs

weight_init = [0 0], bias_init =0
weight_final = [2 1], bias_final = -3

OR Gate In Perceptron

Performance is 0, Goal is 0

P=[0011; 010 1];
T=[0111]; 0.9-
0.8-
net = newp([O0 1; 0 1], 1);
weight init = net.lW1,1}) ERe
bias init = net.b{1} 3 06
20.57
net . trai nParam epochs = 20; ?;04
net = train(net,P, T); £
weight final = net.IW1,1} =~ 03

bias final = net.b{1} 02-
sinmulation = sin(net, P)

0 0.5 1 15 2 2.5
4 Epochs

weight_init = [0 0], bias_init =0
weight_final = [1 1], bias_final = -1

NAND Gate in Perceptron

Performance is 0, Goal is 0

P=[0011, 010 1]

T=[1110], 0.9- -
0.8- .

net = newp([O0 1; 0 1], 1); o7l |

weight init = net. I W1, 1} g '

bias_init = net.b{1} g 06 1

2 05]

net . trai nParam epochs = 20; i oal |

net = train(net,P, T); £

weight final = net.IW1,1} =~ %% I

bias final = net.b{1} 02- 1

simul ation = sin(net,P) o1l]
% I 2 3 4

6 Epochs

weight_init = [0 0], bias_init =0
weight_final = [-2 -1], bias_final = 2

10

NOR Gate in Perceptron

Performance is 0, Goal is 0

P=[0011, 010 1]
T=1[100 0]; 0.9-
0.8-
net = newp([O0 1; 0 1], 1); <o)
weight init = net. I W1, 1} 8
bias_init = net.b{1} 3 06
net.trai nParam epochs = 20; =@
net = train(net,P, T); £ 47
wei ght final = net.IW1,1} £ o3

bias final = net.b{1} 0.2-
simul ation = sinmnet, P)

0 0.5 1 15 2 2.5 3 3.5
4 Epochs

weight_init = [0 0], bias_init =0
weight_final = [-1 -1], bias_final =0

11

Backpropagation in Matlab

Make the backpropagation with
net = newff(PR [S1 S2...SN],{TF1 TF2...TFN }, BTF, BLF, PF)

PR = Rx2 matrix of min and max values for R input elements
S = number of output vector

BTF = Transfer function (user can use any transfer functions)
BLF = Learning function

PF = performance

Xir1 = K¢ - O Gy

Neural Network in Matlab

12

Linear Filter (with ANN) in Matlab

Make the Linear Filter with newl i n(PR 'S, I D, LR)

PR = Rx2 matrix of min and max values for R input elements
S = number of output vector

ID = delay

LR = Learning Rate

Transfer function for linear filter is only linear line (purelin)

Neural Network in Matlab 13

