
Artificial Neural Network
in Matlab

Waslaluddin



Architecture (single neuron)

2

w is weight matrices, dimension 1xR

p is input vector, dimension Rx1

b is bias

a = f(Wp + b)



Transfer Function

3



Architecture with neurons

4

w is weight matrices, dimension SxR

p is input vector, dimension Rxn

b is bias



Multiple layers

5



Perceptrons in Matlab

Make the perceptrons with net = newp(PR,S,TF,LF)
PR = Rx2 matrix of min and max values for R input elements

S = number of output vector

TF = Transfer function, default = ‘hardlim’, other option = ‘hardlims’

6

LF = Learning function, default = ‘learnp’, other option = ‘learnpn’

learnp � ∆w = (t-a)pT = epT

learnpn � normalized learnp

hardlim = hardlimit function

hardlims = symetric hardlimit function

Wnew = Wold + ∆W bnew = bold + e where e = t - a



Compute manually…

�This is an exercise how to run the artificial 
neural network

�From the next problem, we will compute 
the weights and biases manually

7

the weights and biases manually



AND Gate in Perceptron

P = [0 0 1 1; 0 1 0 1];
T = [0 0 0 1];

net = newp([0 1; 0 1],1);
weight_init = net.IW{1,1}
bias_init = net.b{1}

0.5

0.6

0.7

0.8

0.9

1

T
ra

in
in

g-
B

lu
e 

 G
oa

l-B
la

ck

Performance is 0, Goal is 0

8

net.trainParam.epochs = 20;
net = train(net,P,T);
weight_final = net.IW{1,1}
bias_final = net.b{1}
simulation = sim(net,P)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

6 Epochs

T
ra

in
in

g-
B

lu
e 

 G
oa

l-B
la

ck

weight_init = [0 0], bias_init = 0

weight_final = [2 1], bias_final = -3



OR Gate in Perceptron

P = [0 0 1 1; 0 1 0 1];
T = [0 1 1 1];

net = newp([0 1; 0 1],1);
weight_init = net.IW{1,1}
bias_init = net.b{1}

0.5

0.6

0.7

0.8

0.9

1

T
ra

in
in

g-
B

lu
e 

 G
oa

l-B
la

ck

Performance is 0, Goal is 0

9

net.trainParam.epochs = 20;
net = train(net,P,T);
weight_final = net.IW{1,1}
bias_final = net.b{1}
simulation = sim(net,P)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

4 Epochs

T
ra

in
in

g-
B

lu
e 

 G
oa

l-B
la

ck

weight_init = [0 0], bias_init = 0

weight_final = [1 1], bias_final = -1



NAND Gate in Perceptron

P = [0 0 1 1; 0 1 0 1];
T = [1 1 1 0];

net = newp([0 1; 0 1],1);
weight_init = net.IW{1,1}
bias_init = net.b{1}

0.5

0.6

0.7

0.8

0.9

1

T
ra

in
in

g-
B

lu
e 

 G
oa

l-B
la

ck

Performance is 0, Goal is 0

10

net.trainParam.epochs = 20;
net = train(net,P,T);
weight_final = net.IW{1,1}
bias_final = net.b{1}
simulation = sim(net,P)

weight_init = [0 0], bias_init = 0

weight_final = [-2 -1], bias_final = 2

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

6 Epochs

T
ra

in
in

g-
B

lu
e 

 G
oa

l-B
la

ck



NOR Gate in Perceptron

P = [0 0 1 1; 0 1 0 1];
T = [1 0 0 0];

net = newp([0 1; 0 1],1);
weight_init = net.IW{1,1}
bias_init = net.b{1}

0.5

0.6

0.7

0.8

0.9

1

T
ra

in
in

g-
B

lu
e 

 G
oa

l-B
la

ck

Performance is 0, Goal is 0

11

net.trainParam.epochs = 20;
net = train(net,P,T);
weight_final = net.IW{1,1}
bias_final = net.b{1}
simulation = sim(net,P)

weight_init = [0 0], bias_init = 0

weight_final = [-1 -1], bias_final = 0

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

4 Epochs

T
ra

in
in

g-
B

lu
e 

 G
oa

l-B
la

ck



Backpropagation in Matlab

Make the backpropagation with 
net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

PR = Rx2 matrix of min and max values for R input elements

S = number of output vector

Neural Network in Matlab 12

BTF = Transfer function (user can use any transfer functions)

BLF = Learning function

PF = performance

xk+1 = xk - αkgk



Linear Filter (with ANN) in Matlab

Make the Linear Filter with newlin(PR,S,ID,LR)
PR = Rx2 matrix of min and max values for R input elements

S = number of output vector

ID = delay

Neural Network in Matlab 13

LR = Learning Rate

Transfer function for linear filter is only linear line (purelin)


