PENDAHULUAN

Di dalam modul ini Anda akan mempelajari fungsi gelombang spin yang mencakup: matrik spin dan gerak elektron di dalam medan magnet. Oleh karena itu, sebelum mempelajari modul ini Anda terlebih dahulu harus mempelajari modul nomor 4 tentang elemen matrik.

Materi kuliah dalam modul ini merupakan dasar dari materi yang akan Anda pelajari pada modul-modul selanjutnya, terutama modul nomor 6 dari matakuliah Fisika Kuantum.

Pengetahuan yang akan Anda peroleh dari modul ini akan barmanfaat untuk mempelajari materi kuliah Fisika Zat Padat, Fisika Inti, Fisika Atom, Fisika Partikel, dan ilmu-ilmu Fisika lanjut lainnya.

Setelah mempelajari modul ini Anda diharapakan dapat mencapai beberapa tujuan instruksional khusus, sebagai berikut:

Anda harus dapat

- 1. menuliskan momentum sudut dalam bentuk matrik
- 2. membuktikan bahwa matrik-matrik Pauli adalah antikomutatif
- 3. menghitung momen megnet sebuah elektron
- 4. menghitung frekuensi gereak presesi, dan
- 5. menghitung spin total dari sebuah sistem partikel

Materi kuliah dalam modul ini akan disajikan dalam urutan sebagai berikut:

1. KB. 1 Matrik Spin. Di dalam KB. 1 ini Anda akan mempelajari sub-pokok bahasan : matrik-matrik momentum sudut, dan matrik-matrik spin Pauli.

2. KB. 2 Gerak elektron dalam medan magnet. Dalam KB. 2 ini Anda akan mempelajari sub-pokok bahasan: momen magnet elektron, gerak presesi elektron, dan penjumlahan dua buah spin.

Agar Anda dapat mempelajari modul ini dengan baik, ikutilah petunjuk belajar berikut ini.

- 1. Bacalah tujuan instruksional khusus untuk modul ini.
- 2. Baca dan pelajari dengan seksama uraian setiap kegiatan belajar.
- 3. Salinlah konsep dasar dan persamaan-persamaan penting ke dalam buku latihan Anda.
- 4. Perhatikan dan pelajari dengan baik contoh-contoh soal/masalah dalam setiap kegiatan belajar.
- 5. Kerjakan semua soal latihan dan usahakan tanpa melihat kunci jawaban terlebih dahulu.

KB. 1 MATRIK SPIN

1.1 Matrik-matrik momentum sudut.

Dalam modul nomor 4 dari matakuliah Fisika Kuantum Anda telah mempelajari representasi matrik dari sebuah operator. Di dalam modul tersebut telah dijelaskan bahwa representasi matrik (penulisan dalam bentuk matrik) dari sebuah operator A dalam basis-basis yang terdiri dari eigenvektor-eigenvektor A adalah berbentuk *matrik diagonal*. Artinya semua elemen matrik dari operator A itu adalah nol kecuali elemen matrik a_{11} , a_{22} , a_{33} , a_{44} ,, a_{nn} (elemen matrik dalam arah diagonal). Untuk mengingatkan kembali marilah kita ambil contoh operator-operator momentum sudut L^2 dan L_z . Di dalam koordinat bola, L^2 dan L_z memiliki eigenfuncntion (fungsi eigen/fungsi yang tepat) $Y_\ell^m(\vartheta,\phi)$, dimana ℓ dan m masing-masing adalah bilangan kuantum orbit dan bilangan kuantum magnetik, ϑ dan φ adalah sudut-sudut polar. Eigenfuncntion $Y_\ell^m(\vartheta,\varphi)$ ini adalah merupakan basis yang dimaksud di atas. Perhatikan bahwa eigenvektor diartikan sama dengan eigenfuncntion. Elemen-elemen matrik dari L^2 dan L_z biasa diberi simbol masing-masing dengan huruf $L^2_{\ell m,\ell'm'}$ dan $(L_z)_{\ell m,\ell'm'}$. Sebagai contoh marilah kita hitung elemen matrik $L^2_{\ell m,\ell'm'}$.

Di dalam himpunan basis { $Y_\ell^m(\vartheta,\varphi)$ } elemen-elemen matrik $L^2_{\ell m,\ell'm'}$ dapat dihitung sebagai beriktut:

$$L^2_{\ell m,\ell'm'} \ = \ \left\langle \ell m \left| L^2 \right| \ell' \, m' \right\rangle \ = \ \int\limits_{-1}^1 d(\cos \vartheta) \ \int\limits_0^{2\pi} d\phi \ Y_\ell^m \left(\vartheta,\phi\right)^* \quad L^2 \ Y_{\ell'}^{m'} (\vartheta,\phi)$$

$$L_{lm,l'm'}^2 = \hbar^2 \ell(\ell+1) \delta_{\ell\ell'} \delta_{mm'}$$
 , (1)

dimana $\,\delta_{\ell\ell'}\,$ dan $\,\delta_{mm'}\,$ adalah fungsi delta Kronecker yang nilainya adalah sebagai berikut:

$$\delta_{\ell\ell'} = 1$$
 jika $\ell = \ell'$

$$\delta_{\ell\ell'} = 0$$
 jika $\ell \neq \ell'$

$$\delta_{mm'} = 1$$
 jika $m = m'$

$$\delta_{mm'} = 0$$
 jika $m \neq m'$.

Jadi, persamaan (1) hanya akan bernilai \hbar^2 $\ell(\ell+1)$ jika dan hanya jika $\ell=\ell'$ dan m=m'. Artinya, nomor kolom = dengan nomor baris. Dengan demikian, elemen-elemen matrik yang bernilai \hbar^2 $\ell(\ell+1)$ adalah mereka yang terletak pada garis diagonal matrik tersebut. Karena itu matrik L^2 disebut matrik diagonal.

Demikian halnya dengan matrik L_z . Element-elemen matrik $(L_z)_{\ell m,\ell'm'}$ dapat dihitung dengan menggunakan persamaan berikut:

$$(L_{z})_{\ell m, \ell' m'} = \left\langle \ell m \middle| L_{z} \middle| \ell' m' \right\rangle = \int_{-1}^{1} d(\cos \vartheta) \int_{0}^{2\pi} d\varphi \ Y_{\ell}^{m} (\vartheta, \varphi)^{*} \ L_{z} \ Y_{\ell'}^{m'} (\vartheta, \varphi)$$

$$(L_{z})_{\ell m, \ell' m'} = m \hbar \ \delta_{\ell \ell'} \delta_{m m'}$$
(2)

sehingga elemen-elemen matrik yang bernilai m \hbar adalah mereka yang terletak pada garis diagonal, sedangkan elemen-elemen matrik lainnya adalah nol.

Cara menuliskan elemen matrik dari sebuah matrik adalah sebagai berikut : baris-baris dan kolom-kolom sebuah matrik disusun sedemikian rupa sehingga untuk setiap nilai ℓ , m bernilai mulai dari - ℓ sampai + ℓ dengan selang 1. Demikian pula m'. Untuk setiap nilai ℓ ', m' bernilai muali dari - ℓ ' sampai + ℓ ' dengan selang 1. Dalam hal ini m menyatakan baris dan m' menyatakan kolom dari matrik tersebut.

Contoh:

- 1. untuk $\ell=0$ dan $\ell'=0$, nilai m=m'=0, sehingga matrik $L^2=[0]$.
- 2. Untuk $\ell=1$ dan $\ell'=1$, maka nilai m=-1,0,+1. Dan juga nilai m'=-1,0,+1. Nilai elemen matrik $L^2_{\ell m,\ell'm'}$ adalah:

$$L^2_{\ell m,\ell'm'} \; = \; \hbar^2 \quad \ell \; (\; \ell \; + 1) \; \; \delta_{\ell \ell'} \; \delta_{mm'} \; = 2 \; \; \hbar^2 \; \; . \; \text{Jadi matrik L^2 dapat ditulis sebagai berikut} \; :$$

$$\mathbf{L}^2 = \ \hbar^2 \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Ingatlah bahwa nilai m menyatakan baris, dan m' menyatakan kolom. Elemen-elemen matrik L^2 tersebut dihitung dengan menggunakan persamaan (1).

Contoh: element matrik $L^2_{11,11} = \hbar^2 \ \ell \ (\ell + 1) \ \delta \ \ell \ \ell' \ \delta_{mm'}$.

$$= \hbar^2 1(1+1) \delta_{11}, \delta_{11}. = 2 \hbar^2$$
.

Dalam contoh ini, nilai kedua $\delta = 1$, karena $\ell = \ell'$, dan m = m'.

Contoh lainnya adalah elemen matrik $L^2_{10,11}$. Dengan menggunakan persamaan (1) Anda dapat menentukan nilai elemen matrik $L^2_{10,11}$ sebagai berikut :

$$\begin{split} L^2{}_{10,11} = \ \hbar^2 \quad \ell \, (\,\ell + 1) \ \delta_{11} \ \delta_{01}. \\ \\ = \ \hbar^2 \, x \ 1 \ x \ (1 + 1) \ x \ 1 \ x \ 0 = 0. \ \text{(catatan: } x = \ \text{operator kali)}. \end{split}$$

Perhatikan dengan teliti urutan indek untuk kedua δ dan indek untuk L^2 .

Latihan:

- 1. Buktikan nilai elemen-elemen matrik lainnya.
- 2. Tentukan elemen-elemen matrik L^2 untuk $\ell=2$ dan $\ell'=2$. Petunjuk untuk menjawab soal-soal latihan ini adalah sebagai berikut:
 - 1. tentukan nilai-nilai m dan m'.

2. gunakan persamaan (1) untuk menghitung elemen-elemen matrik $\ L^2_{\ell m,\ell'm'}$.

Perhatikan bahwa elemen-elemen matrik yang bernilai tidak sama dengan nol adalah elemen-elemen matrik yang terletak pada diagonal matrik tersebut. Karena itu, matrik L^2 disebut matrik diagonal.

Dari contoh-contoh dan jawaban soal-soal latihan di atas, Anda dapat menyusun sebuah tabel untuk elemen-elemen matrik $L^2_{\ell m,\ell'm'}$. Tabel tersebut akan tampak sebagai berikut:

	\bigvee_{ℓ}	m										
€'			0	1	1	1	2	2	2	2	2	
m'			0	1	0	-1	2	1	0	-1	-2	
	0	0	0									
	1	1		$2\hbar^2$	0	0						
	1	0		0	$2\hbar^2$	0	0					
	1	-1		0	0	$2\hbar^2$						
	2	2					$6\hbar^2$	0	0	0	0	
	2	1					0	$6\hbar^2$	0	0	0	
	2	0		()		0	0	$6\hbar^2$	0	0	
	2	-1					0	0	0	$6\hbar^2$	0	
	2	-2					0	0	0	0	$6\hbar^2$	

Catatan: angka nol yang dicetak besar menyatakan matrik-matrik yang semua elemennya bernilai nol.

Selanjutnya marilah kita bahas elemen matrik $(L_z)_{lm,l'm'}$, seperti yang ditunjukan oleh persamaan (2) di atas. Marilah kita ambil contoh untuk $\ell = \ell' = 0$, dan untuk $\ell = \ell' = 1$.

1. Matrik elemen $(L_z)_{lm,l'm'}$ untuk $\ell = \ell' = 0$.

Jika $\ell = 0$, maka m = 0, sehingga:

Elemen matrik $(L_z)_{lm,l'm'} = (L_z)_{00,00} = m \hbar \delta_{00}. \delta_{00}.$

Meskipun nilai kedua $\delta = 1$, tetapi karena nilai m = 0, maka

$$(L_z)_{lm\ l'm'} = (L_z)_{00,00} = 0.$$

2. Matrik elemen $(L_z)_{lm,l'm'}$ untuk $\ell=\ell'=1$.

Karena $\ell=\ell'=1$, maka nilai m = -1, 0, 1 dan nilai m'= -1, 0, 1 sehingga banyaknya elemen matrik yang dapat diperoleh adalah 9 buah, yaitu sebagai berikut :

- a. Baris ke 1: $(L_z)_{11,11}$, $(L_z)_{10,11}$, $(L_z)_{1(-1),11}$.
- b. Baris ke 2: $(L_z)_{11,10}$, $(L_z)_{10,10}$, $(L_z)_{1(-1),10}$.
- c. Baris ke 3: $(L_z)_{11,1(-1)}$, $(L_z)_{10,1(-1)}$, $(L_z)_{1(-1),1(-1)}$.

Perhatikan bahwa indek yang bernilai negatif disimpan di dalam tanda kurung $\ (...)$. Dengan menggunakan persamaan (2) di atas kita dapat menghitung ke 9 elemen matrik tersebut. Sebagai contoh, marilah kita hitung elemen matrik $(L_z)_{11,11}$. Untuk elemen matrik ini kita tahu bahwa nilai $\ell=\ell'=1$, dan nilai m=m'=1 sehingga elemen matrik ini dapat dihitung sebagai berikut:

$$(L_z)_{11,11} = m \ \hbar \ \delta_{11} \ . \ \delta_{11} = \ \hbar \ .$$

Sebagai contoh yang lain, marilah kita hitung elemen matrik $(L_z)_{10,1(-1)}$. Untuk elemen matrik ini kita tahu bahwa nilai $\ell = \ell' = 1$, dan m = 0, m' = -1 sehingga:

$$(L_z)_{10,1(-1)} = m \hbar \delta_{11}.\delta_{0(-1)}.$$

Disamping m=0, juga $\delta_{0(-1)}=0$, sehingga nilai elemen matrik $(L_z)_{10,1(-1)}=0$.

Latihan:

Hitunglah ketujuh elemen matrik lainnya untuk $\ell = \ell' = 1$ dari matrik L_z tersebut di atas.

Petunjuk:

- 1. Tentukan nilai-nilai ℓ , m, ℓ ', dan m' untuk setiap elemen matrik.
- 2. Gunakan persamaan (2) di atas.

Apabila Anda dapat menjawab soal latihan ini dengan benar, maka Anda akan dapat menuliskan matrik L_z dengan elemen-elemen matrik sebagai berikut:

$$\mathbf{L}_{z} = \hbar \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Latihan:

Tentukanlah nilai-nilai elemen matrik L_z untuk $\ell=\ell'=2$ serta tuliskan semua nilai matrik tersebut dalam bentuk sebuah matrik L_z .

Petunjuk:

- 1. Tentukan nilai-nilai m dan m'.
- 2. Gunakan persamaan (2).
- Susun semua elemen matrik dalam sebuah matrik dengan ketentuan m = nomor baris, dan m' = nomor kolom.

Secara umum, semua elemen matrik $(L_z)_{lm,l'm'}$ untuk matrik L_z dapat dirangkum dalam sebuah tabel seperti di bawah ini:

	\bigvee_{ℓ}	m									
ℓ'			0	1	1	1	2	2	2	2	2
m'			0	1	0	-1	2	1	0	-1	-2
	0	0	0								
	1	1		1 ħ	0	0	0				
	1	0		0	1 ħ	0					
	1	-1		0	0	-1 ħ					
	2	2					2 ħ	0	0	0	0
	2	1					0	1 ħ	0	0	0
	2	0		0				0	0	0	0
	2	-1					0	0	0	<i>-</i> ħ	0
	2	-2					0	0	0	0	-2 <i>ħ</i>

Selanjutnya marilah kita hitung matrik L_x dan L_y yang merupakan komponen dari marik L_x . Untuk menghitung matrik-matrik L_x dan L_y di dalam basis tersebut di atas Anda dapat menggunakan matrik-matrik untuk operator L_+ dan L_- , yaitu sebagai berikut:

$$L_x = \frac{1}{2} (L_+ + L_-) \qquad dan \qquad L_y = -i/2 (L_+ - L_-)$$
 (3).

Jadi tugas kita adalah menentukan matrik-matrik untuk L_+ dan L_- . Tetapi karena L_+ = L_-^* (Baca : L_+ sama dengan ajoin/sekawan dari L_-) maka kita cukup menentukan salah satu matrik saja, yaitu L_+ saja atau L_- saja.

Di dalam modul nomor 4 dari matakuliah fisika kuantum Anda telah mempelajari hubungan antara elemen matrik-matrik (L_+) ℓ m, ℓ' m, dan (L__) ℓ m, ℓ' m, dengan fungsi gelombang Y_ℓ^m , yaitu sebagai berikut:

$$(L_{\pm}) \, \ell_{\,m,\,\ell'\,m'} = \left\{ (\,\ell' \mp \,\,m') \, (\,\ell' \pm m' + 1) \right\}^{1/2} \, \, \hbar \, \, \, \delta \, \ell \, \, \ell' \, \delta_{mm' \pm 1} \tag{4}$$

Contoh: untuk $\ell=1$ dan $\ell'=1$ tentukanlah elemen-elemen matrik $(L_+)_{11,11}$, $(L_+)_{11,10}$, $(L_-)_{10,11}$, dan $(L_-)_{10,10}$.

Jawab:

Untuk $\ell=1$ dan $\ell'=1$ berarti m=-1,0,1 dan m'=-1,0,1. Karena kita hanya diminta untuk menghitung elemen matrik matrik $(L_+)_{11,11}, (L_+)_{11,10}, (L_-)_{10,11}$, dan $(L_-)_{10,10}$ saja, maka nilai-nilai m dan m' yang terlibat hanya 1 dan 0 saja. (Silahkan amati nilai indek dari setiap elemen matrik tersebut). Dengan demikian, elemen-elemen matrik tersebut di atas dapat kita hitung sebagai berikut:

a.
$$(L_+)_{11,11} = \{(1\text{-}1) (1\text{+}1\text{+}1)\}^{1/2} \hbar \delta_{11}.\delta_{12}.$$

= 0.

Perhatikan bahwa nilai elemen matrik $(L_+)_{11,11}$ sama dengan nol tidak hanya disebabkan oleh (1-1) saja, tetapi juga kerana nilai delta δ_{12} yang juga sama dengan nol.

d.
$$(L_+)_{11,10} = \{(1-0)(1+0+1)\}^{1/2} \hbar \delta_{11}.\delta_{11}.$$

= $\hbar \sqrt{2}$.

c.
$$(L_{_})_{10,11} = \{(1+1)(1-1+1)\}^{1/2} \hbar \delta_{11}.\delta_{00}.$$

= $\hbar \sqrt{2}$.

d.
$$(L_{-})_{10,10}=\left\{(1+0)\left(1-0+1\right)\right\}^{1/2}~\hbar~\delta_{11}.~\delta_{0(-1)}$$
 .
$$=0, \qquad \qquad \text{karena}~\delta_{0(-1)}=0.$$

Apabila Anda menghitung semua elemen matrik $(L_+)_{\ell m}$, ℓ'_m untuk $\ell=1$ dan $\ell'=1$, serta menuliskannya dalam bentuk matrik, maka Anda dapat menulis operator L_+ dalam bentuk matrik sebagai berikut:

$$L_{+} = \hbar \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}. \tag{5}$$

Demikian juga halnya dengan operator L_- . Cobalah hitung semua elemen matrik $(L_-) \ell_m, \ell'_m$ untuk $\ell=1$ dan $\ell'=1$ dengan menggunakan persamaan (4) dan contoh di atas, kemudian tuliskan pula matrik L_- . Matrik L_- tersebut akan tampak sebagai berikut :

$$L_{-} = \hbar \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}. \tag{6}$$

Akhirny kita dapat menentukan matrik L_x dan L_y dengan menggunakan persamaan (3), (5), dan (6) di atas. Dengan menggunakan ketiga persamaan tersebut kita dapat menghitung matrik L_x dan L_y sebagai berikut :

a.
$$L_x = \frac{1}{2} (L_+ + L_-)$$

$$L_{x} = \frac{\hbar}{2} \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix} + \frac{\hbar}{2} \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & \sqrt{2} & 0 \\ \sqrt{2} & 0 & \sqrt{2} \\ 0 & \sqrt{2} & 0 \end{pmatrix}$$

$$L_{x} = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}. \tag{7}$$

Perhatikan bahwa kita telah menyederhanakan penulisan *tanda akar* untuk semua elemen matrik.

Hal ini karena
$$\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$
.

b.
$$L_y = -\frac{i}{2} (L_+ - L_-)$$

$$L_y = \frac{\hbar}{2i} \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix} - \frac{\hbar}{2i} \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix} = \frac{\hbar}{2i} \begin{pmatrix} 0 & \sqrt{2} & 0 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 0 & -\sqrt{2} & 0 \end{pmatrix}$$

$$L_{y} = \frac{\hbar}{i\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}. \tag{8}$$

Perhatikan bahwa $-\frac{i}{2} = +\frac{1}{2i}$.

5.2 Matrik-matrik spin Pauli.

Seperti kita ketahui bahwa momentum sudut suatu partikel dapat dibagi menjadi dua, yaitu *momentum sudut orbit* (\vec{L}) dan *momentum sudut intrinsik* (\vec{S}) atau sering disebut *spin*. Kita baru saja membahas representasi momentum sudut \vec{L} dalam bentuk matrik. Sekarang kita akan membicarakan representasi Spin (\vec{S}) dalam bentuk matrik, serta akan mendifinisikan matrik spin Pauli (σ).

Vektor momentum sudut spin sering ditandai dengan simbol \vec{S} (Perhatikan tanda vektor). Sifat-sifat dari operator mementum sudut spin S (Tanpa tanda vektor) adalah sama dengan sifat-sifat untuk momentum sudut orbit. Sebagai contoh, hubungan komutatif antara komponen-komponen S_x , S_y , dan S_z memenuhi aturan berikut:

 $[S_x, S_y] = i \hbar S_z$; $[S_y, S_z] = i \hbar S_x$; $[S_z, S_x] = i \hbar S_y$. Disamping itu, seperti halnya untuk momentum sudut L, kita juga dapat mendefinisikan operator-operator

S₊ dan S_ untuk momentum sudut spin, yaitu sebagai berikut :

$$S_{+} = S_{x} \pm i S_{y}. \tag{9}$$

Demikian pula halnya dengan persamaan eigenvalu-nya. Kita juga dapat menuliskan persamaan eigenvalue untuk spin sebagai berikut:

$$S^{2}|s,m_{s}\rangle = \hbar^{2} s (s+1) |s,m_{s}\rangle ; dan S_{z}|s,m_{s}\rangle = \hbar m_{s} |s,m_{s}\rangle.$$
 (10)

Perhatikan bahwa nilai-nilai $\,\hbar^2\,s\,(s+1)\,$ dan $\,\hbar\,m_s\,$ masing-masing disebut $\,\underline{\it eigenvalue}\,$ dari $\,S^2\,$ dan $\,S_z.\,$ Sedangkan vektor $\,\left|\,s\,,\,m_{_S}\,\right>\,$ disebut $\,\underline{\it eigenvektor}\,$ dari $\,S^2\,$ dan $\,S_z.\,$

Untuk sebuah nilai s tertentu, nilam m_s adalah mulai dari —s sampai +s dengan step +1. Sebagai contoh, untuk s=1, maka nilai $m_s=-1$, 0, dan 1. Untuk nilai s=2, maka nilai $m_s=-2$, -1, 0, 1, dan 2. Untuk s=5/2, maka nilai $m_s=-5/2$, -3/2, -1/2, 1/2, 3/2, dan 5/2.

Contoh partikel yang memiliki nilai spin s = 0 adalah <u>meson</u>, dan partikel yang memiliki spin s = 1 adalah <u>foton</u>. Sedangkan partikel-partikel yang memiliki nilai spin $s = \frac{1}{2}$ adalah: <u>elektron</u>, <u>proton</u>, dan <u>netron</u>.

Selanjutnya marilah kita pelajari fungsi eigen (eigenfuction/eigenstate) untuk partikel yang memiliki spin ½, seperti elektron, proton, dan netron. Karena partikel-partikel tersebut memiliki spin = ½, maka m_s bernilai – ½ dan + ½ . Selanjutnya marilah kita definisikan fungsi eigen untuk s=1/2, $m_s=1/2$ dan s=1/2, $m_s=-1/2$ sebagai berikut :

$$\alpha = |s, m_s\rangle = \left|\frac{1}{2}, +\frac{1}{2}\right\rangle \, dan$$

$$\beta = |s, m_s\rangle = \left|\frac{1}{2}, -\frac{1}{2}\right\rangle. \tag{11}$$

Dengan demikian kita dapat menuliskan persamaan eigenvalue untuk S^2 dan S_z sebagai berikut:

$$S^2 \ \alpha = \frac{3}{4} \ \hbar^2 \ \alpha \ ; \qquad S_z \ \alpha = \ \hbar/2 \ \alpha. \label{eq:Sz}$$

$$S^2 \beta = \frac{3}{4} \hbar^2 \beta$$
; $S_z \beta = -\hbar/2 \beta$.

Operator-operator S₊ dan S₋ dalam fungsi eigen α dan β dapat ditulis sebagai berikut:

$$S_{+}|s,m_{s}\rangle = \hbar \sqrt{s(s+1)-m_{s}(m_{s}+1)}|s,m_{s}+1\rangle$$
(12)

$$S_{-}|s,m_{s}\rangle = \hbar \sqrt{s(s+1)-m_{s}(m_{s}-1)}|s,m_{s}-1\rangle.$$
(13)

Untuk $s=\frac{1}{2}$, kita punya $m_s=\frac{1}{2}$ dan $m_s=-\frac{1}{2}$. Jika nilai-nilai ini kita substitusikan ke dalam persamaan (12) dan (13), maka kita akan memperoleh persamaan untuk S_+ dan S_- sebagai berikut:

a. untuk $s = \frac{1}{2} dan m_s = \frac{1}{2}$.

$$(S_x + iS_y)\alpha = S_+ \mid \frac{1}{2}, \frac{1}{2} \rangle = 0$$
; karena nilai di dalam akar = 0. (14)

$$\left(\mathbf{S}_{\mathbf{x}} - \mathbf{i}\mathbf{S}_{\mathbf{y}}\right) \alpha = \mathbf{S}_{-} \left| \frac{1}{2}, \frac{1}{2} \right\rangle = \hbar \left| \frac{1}{2}, -\frac{1}{2} \right\rangle = \hbar \beta. \tag{15}$$

Jika persamaan (14) dan (15) di atas kita jumlahkan, maka kita akan memperoleh persamaan (bukan persamaan eigenvalue, karena vektor sebelah kiri adalah α sedangkan di ruas kanan adalah β):

$$S_{x} \alpha = (\frac{1}{2}) \hbar \beta, \tag{16}$$

Dan jika kita kurangkan maka kita akan memperoleh persamaan (bukan persamaan eigenvalue, karena vektor sebelah kiri adalah α sedangkan di ruas kanan adalah β):

$$S_{v} \alpha = (i/2) \hbar \beta. \tag{17}$$

b. untuk s = $\frac{1}{2}$ dan m_s = - $\frac{1}{2}$.

$$\left(S_{x} + iS_{y}\right)\beta = S_{+} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle = \hbar \left| \frac{1}{2}, \frac{1}{2} \right\rangle = \hbar \alpha, \text{ dan}$$
 (18)

$$\left(\mathbf{S}_{\mathbf{x}} - i\mathbf{S}_{\mathbf{y}}\right)\boldsymbol{\beta} = \mathbf{S}_{-}|\mathbf{1}_{2}, -\mathbf{1}_{2}\rangle = 0 ; \text{ Karena nilai di dalam akar} = 0.$$
 (19)

Jika kedua persamaan ini dijumlahkan, maka Anda akan mendapatkan persamaan (juga bukan persamaan eigenvalue):

$$S_{x} \beta = (\frac{1}{2}) \hbar \alpha, \qquad (20)$$

Dan jika dikurangkan, Anda akan mendapatkan persamaan (bukan persamaan eigenvalue):

$$S_{V} \beta = -(i/2) \hbar \alpha. \tag{21}$$

Dengan demikian, kita dapat simpulkan bahwa persamaan-persamaan untuk S_x , S_y , dan S_z di dalam basis α dan β sebagai berikut:

$$S_{x} \alpha = (\frac{1}{2}) \hbar \beta \quad \text{dan } S_{x} \beta = (\frac{1}{2}) \hbar \alpha;$$

$$S_{y} \alpha = (i/2) \hbar \beta, \text{ dan } S_{y} \beta = -(i/2) \hbar \alpha.$$

$$S_{z} \alpha = (\frac{1}{2}) \hbar \alpha, \text{ dan } S_{z} \beta = -(\frac{1}{2}) \hbar \beta.$$

$$(22)$$

Catatan: Kedua persamaan untuk S_z di dalam persamaan (22) adalah merupakan persamaan eigenvalue.

Dengan menggunakan persamaan eigenvalue di atas (persamaan 22), kita dapat menentukan matrik-matrik yang merepresentasikan operator-operator S_x , S_y , dan S_z di dalam basis α dan β , yaitu sebagai berikut:

$$S_{x} = \begin{pmatrix} \langle \alpha | S_{x} | \alpha \rangle & \langle \alpha | S_{x} | \beta \rangle \\ \langle \beta | S_{x} | \alpha \rangle & \langle \beta | S_{x} | \beta \rangle \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S_{y} = \begin{pmatrix} \langle \alpha | S_{y} | \alpha \rangle & \langle \alpha | S_{y} | \beta \rangle \\ \langle \beta | S_{y} | \alpha \rangle & \langle \beta | S_{y} | \beta \rangle \end{pmatrix} = \frac{i\hbar}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$S_{z} = \begin{pmatrix} \langle \alpha | S_{z} | \alpha \rangle & \langle \alpha | S_{z} | \beta \rangle \\ \langle \beta | S_{z} | \alpha \rangle & \langle \beta | S_{z} | \beta \rangle \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

$$(23)$$

Operator spin biasa didefinisikan sebagai berikut:

 $\hat{\sigma} = \frac{2}{\hbar}\hat{S}$, dimana $\hat{\sigma}$ merupakan <u>operator spin Pauli</u> dan \hat{S} merupakan <u>operator Spin</u>.

Dengan menggunakan persamaan (23) kita dapat menuliskan matrik yang merepresentasikan komponen operator spin Pauli σ_x sebagai berikut:

$$\sigma_x = \frac{2}{\hbar} \ x \ \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_{\mathbf{x}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \tag{24}$$

Dengan cara yang sama, kita dapat menuliskan komponen-komponen operator spin Pauli σ_y , σ_z sebagai berikut:

$$\sigma_{y} = i \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} dan \tag{25}$$

$$\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{26}$$

Ketiga matrik inilah (persamaan 24, 25, dan 26) yang kita cari dan kita sebut sebagai *matrik-matrik spin Pauli*.

Eigenvektor α dan β dapat dinyatakan dalam bentuk matrik sebagai berikut:

$$\alpha = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
; dan $\beta = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, sehingga persamaan orthonomalisasi dari kedua vektor tersebut

dapat kita hitung sebagai berikut:

$$\langle \alpha | \alpha \rangle = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1.$$

$$\langle \alpha | \beta \rangle = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0.$$

$$\langle \beta | \beta \rangle = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1.$$

$$\langle \beta | \alpha \rangle = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0.$$

Contoh soal:

Hitunglah eigenvalue dan eigenvektor untuk S_x dari sebuah spin setengah (s = $\frac{1}{2}$). Jawab:

a. Kita misalkan eigenvalue dari S_x tersebut adalah E_x , dan eigenvektornya $|A\rangle$ yang komponennya adalah a_1 dan a_2 , sehingga kita dapat menuliskan persamaan eigenvalue sebagai berikut:

$$S_x |A\rangle = E_x |A\rangle$$
.

Dimana:
$$|A\rangle = a_1 |A_1\rangle + a_2 |A_2\rangle$$

$$\frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = E_x \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}.$$

Supaya persamaan matrik ini dapat diselesaikan, kita terlebih dahulu harus mengalikan suku persamaan di ruas kanan dengan sebuah matrik identitas (yaitu matrik $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$) kemudian memindahkannya ke ruas kiri, sehingga persamaan tersebut tampak seperti di bawah ini

$$\frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} - E_x \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = 0.$$

$$\begin{pmatrix} -E_x & \frac{\hbar}{2} \\ \frac{\hbar}{2} & -E_x \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = 0.$$
(27)

$$\begin{vmatrix} -E_x & \frac{\hbar}{2} \\ \frac{\hbar}{2} & -E_x \end{vmatrix} = 0, \text{ atau } E_x = \pm \frac{\hbar}{2} . \tag{28}$$

Jadi eigenvalue dari operator S_x adalah $-\frac{\hbar}{2}$ dan $+\frac{\hbar}{2}$.

- b. Selanjutnya marilah kita hitung eigenvektor S_x . Untuk itu, kita substitusikan kedua nilai eigenvalue tadi ke persamaan (27) satu persamaan satu sebagai berikut.
 - untuk $E_x = +\frac{\hbar}{2}$, kita peroleh persamaan sebagai berikut :

$$\begin{pmatrix} -\frac{\hbar}{2} & \frac{\hbar}{2} \\ \frac{\hbar}{2} & -\frac{\hbar}{2} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = 0, \text{ berarti } a_1 = a_2.$$

Karena eigenvektor ini harus normal, maka:

$$\left\langle A \left| A \right\rangle \right. = 1 = (a_1)^2 + (a_2)^2. \text{ Karena } a_1 = a_2, \text{ maka 2 } (a_1)^2 = 1. \text{ Atau } a_1 = a_2 = \frac{1}{\sqrt{2}} \,.$$

Jadi eigenvektor S_x dengan eigenvalue $E_x = +\frac{\hbar}{2}$ adalah:

$$|A\rangle = \frac{1}{\sqrt{2}} |A_1\rangle + \frac{1}{\sqrt{2}} |A_2\rangle.$$

Atau dalam bentuk matrik $|A\rangle = \alpha_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

 $\underline{\textbf{Latihan}} : Cobalah \ tentukan \ eigenvektor \ S_x \ untuk \ eigenvalue - \frac{\hbar}{2} \, .$

Petunjuk: Ikuti langkah-langkah seperti pada bagian b diatas, dengan

mensubstitusikan nilai $E_x = -\frac{\hbar}{2}$ ke dalam persamaan (27). Anda harus mendapatkan

nilai eigenvektor
$$|B\rangle = \beta_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$