

The Effect Of SiO₂ Addition On The Characteristics Of CuFe₂O₄ Ceramics For NTC

Wiendartun¹⁾ & Dani Gustaman Syarif²⁾
1) Departement Of Physics, UPI, Bandung.
2) Nuclear Technology Center for Materials and Radiometry – BATAN, Bandung.

INTRODUCTION

- THERMISTOR → Thermally Sensitive Resistor.
- NTC CHARACTERISTIC :

PRODUCT EXAMPLES:

- Important electronic component.
 - Sectors: Biomedical, aerospace, instrumentation, communications, automotive
- and HVACI Heating, Ventilation, Air conditioning and Refrigeration).

 Application: Temperature measurement, circuit compensation, suppression of in rush-current, flow rate sensor and pressure sensor.
- Most, thermistors are produced from spinel ceramics based on transition metal
- oxides forming general formula AB₂O₄.

 Need alternative (Expecially based on abundant material (mineral) in Indonesia)

 → CuFe₂O₄ is proposed, including that added with SiO₂.
- Predicted that the SiO₂ addition can improve the characteristics ceramic for NTC thermistors of the CuFe₂O₄

CRUSHING

3, 9 ton/Cm2

PRESSING

1100 °C/2 h SINTERING

CHARACTERIZATION

- > XRD
- Electrical

Microstructural

RESULT (XRD)

XRD profiles of CuFe₂O₄ based-ceramics

RESULTS (Microstructure)

Microstructure of the CuFe₂O₄ based-ceramics

In Rosistivity list ik, p (in Ohm-cm)	9 - 8 - 7 - 6 - 5 - 4 - 3 -	CONTRACTOR OF THE PARTY OF THE	+ 0 w/o SiO2 ID 0.25 w/o SiO2 - 0.50 w/o SiO2 0.75 w/o SiO2
	0.0025	0.003	0.0035
		1/T (1/*K)	

	(w/o)	(K)	(%/ K)	(Ohm-Cm		
1.	0.00	2548	2.83	291		
2.	0.25	2358	2.62	1079		
3.	0.50	2884	3.20	4788		
4.	0.75	3308	3.68	9400		
W 1						

Ln resistivity (p) vs 1/T of SiO₂ added- CuFe₂O₄ ceramics

rket requirement for B \geq 2000 oK and $\alpha \geq$ 2.2 % Market requirement for pRT = 10 ohm.cm -1 Mohm.cm

- NTC Thermistor

- BetaTHERM Sensors [on line]. Available: http://www.betatherm.com.
- Eun Sang Na, Un Gyu paik, Sung Churl Choi, "The effect of a microstructure on the electrical properties of a Mn-Co-Ni-O th Journal of Ceramic Processing Research, Vol.2, No. 1, pp 31
- Miendartun, Dani Gustaman Syarif. The Effect of TiO2 Addition racteristics of Sciences (ICMNS) 2006, ITB, Bandung, October 2

The authors wish to acknowledge their deep gratitude to DIKTI, Department of National Education of Indonesian Government for financial support under h Pekerti program with contract No.014/SPP/PP/DP2M/II/2006a