The Effect of SiO2 Addition on the Characteristics of CuFe2O4 Ceramics for NTC Thermistors

Wiendartun ¹), Dani Gustaman Syarif ²)

 ¹) Department of Physics, UPI, Bandung.
²)Nuclear Technology Center for Materials and Radiometry – BATAN, Bandung.

INTRODUCTION

■ THERMISTOR→ Thermally Sensitive Resistor. ■ NTC CHARACTERISTIC : PRODUCT EXAMPLES:

INTRODUCTION (Continuation)

Important electronic component.

- Sectors: Biomedical, aerospace, instrumentation, communications, automotive and HVACR (Heating, Ventilation, Air conditioning and Refrigeration).

-Application : Temperature measurement, circuit compensation, suppression of in rush-current, flow rate sensor and pressure sensor.

- Most, thermistors are produced from spinel ceramics based on transition metal oxides forming general formula AB2O4.
- Need alternative (Expecially based on abundant material (mineral) in Indonesia) → CuFe2O4 is proposed, including that added with SiO2.
- Predicted that the SiO2 addition can improve the characteristics of the CuFe2O4 ceramic for NTC thermistors.

EXPERIMENT

RESULTS (XRD)

0.25 w/o SiO2

0 w/o SiO2

0.50 w/o SiO2

0.75 % SiO2

XRD profiles of CuFe₂O₄ based-ceramics.

RESULTS (Microstructure)

0 w/o SiO2

0.25 w/o SiO2

0.75 w/o SiO2

Microstructure of the CuFe₂O₄ based-ceramics.

RESULTS (Electrical Characteristics)

Ln resistivity (ρ) vs 1/*T* of SiO₂ added- CuFe₂O₄ ceramics.

RESULTS (Electrical Characteristics)

No.	Additive of SiO ₂ (w/o)	B (°K)	α (%/°K)	ρ _{RT} (Ohm-cm)
1.	0,00	2548	2,83	291
2.	0.25	2358	2,62	1079
3.	0.50	2884	3,20	4788
4.	0,75	3308	3,68	9400

Market requirement for B is $\geq 2000 \text{ °K}$ and α is $\geq 2.2 \text{ %/°K[7]}$, market requirement for $\rho_{RT} = 10$ ohm.cm -1 Mohm.cm [4].

CONCLUSIONS

- The CuFe2O4 ceramics can be applied as NTC Thermistor.
- The grain size of the CuFe2O4 ceramics tends to decrease by addition of SiO2.

The addition of SiO2 increased the room temperature resistivity (ρ RT) and the thermistor constant (B) of the CuFe2O4 ceramics due to the segregated SiO2.

The value of (ρ_{RT}) and (B) of the CuFe2O4 ceramics made in this work fits the market requirement.

THANK YOU

The authors wish to acknowledge their deep gratitude to DIKTI, Department of National Education of Indonesian Government for financial support under hibah Pekerti program with contract No.014/SPP/PP/DP2M/II/2006