Electrical Characteristics of CuO Added-ZnFe₂O₄ Ceramic Semiconductor in Air and Ethanol Gas Atmosphere

Wiendartun¹⁾, Dani Gustaman Syarif²⁾, Nur Asiah Jamil¹⁾

- 1) Department of Physics, UPI, Bandung, email: wien_upi@yahoo.com
- ²⁾ Nuclear Technology Center for Materials and Radiometry–BATAN, Bandung. email: danigusta@yahoo.com

INTRODUCTION

- In modern life people need many sophisticated products for daily life such as food industry, environment and health , one of the products required is gas sensor.
- It is necessary to get capability in self producing gas sensor by utilizing mineral containing Zn and Fe abundant in Indonesia. → ZnFe₂O₄ based-thick film ceramic for ethanol gas sensor with low working temperature.
- A preliminary study of producing thick film ceramic based on ZnFe₂O₄ for ethanol gas sensor.
- Theoretically, the addition of CuO may change the microstructure of the ZnFe₂O₄, so the ZnFe₂O₄ thick film ceramic with different microstructure may have different electrical characteristics, then may change the electrical characteristics of the ZnFe₂O₄ thick film ceramic.
- The aim of this work is to know the effect of CuO addition on electrical characteristics of the ZnFe₂O₄ thick film ceramics in air and ethanol gas.

EXPERIMENT:

Flow diagram of the experiment procedure

APS - ITB, 22-23 July 2009

A schematic *view* of a thick film ceramic sensor

Appearance of the ZnFe₂O₄ thick film ceramic before cutting.

Thick film ceramic

Silver electrode

Schematic *figure* of electrical characterization.

RESULT (XRD)

Intensity (Cps) 2θ (Degree)

Diffraction profile of ZnFe O thick film.

Diffraction profile of CuO added-ZnFe O thick film. C is peak from CuO. A is from substrate.

XRD profile of ZnFe₂O₄ based-thick film

RESULT (XRD)

Lattice constant of ZnFe₂O₄ and CuO added- ZnFe₂O₄ thick film ceramics.

No.	Concentration of CuO (%)	Lattice constant (Angstrom)
1	0	8.461± 0.078
2	10	8.434 ± 0.018

RESULTS (Microstructure)

Microstructure of ZnFe O thick film.

Microstructure of ZnFe O :CuO 10 mole % thick film.

Microstructure of the ZnFe₂O₄ thick film

RESULTS (Electrical Characteristics)

In R versus 1/T for ZnFe O thick film 2 4 ceramic in air and ethanol gas.

In R versus 1/T for CuO added-ZnFe O thick film ceramic in air and 2 4 ethanol gas.

RESULTS (Electrical Characteristics)

Resistance (R) as a function of ethanol gas concentration of ZnFe₂O₄ thick film ceramic for measurement temperature of 290oC and of CuO added-ZnFe₂O₄ thick film ceramic for measurement temperature of 120oC.

CONCLUSIONS

- Thick film ceramics of ZnFe₂O₄ and CuO added-ZnFe₂O₄ had been well produced at firing temperature of 1000°C.
- All of the thick films crystallizes in spinel cubic.
- The addition of 10 mole % CuO : decreases the electrical resistance, decreases the working temperature and decreases the sensitivity of the ZnFe₂O₄ thick film ceramic, because the addition of 10 mole % CuO changes the microstructure resulting in large grains.
- The produced thick film ceramics have semiconductor characteristic where the resistance decreases with the increase of temperature.
- The resistance of the films measured in ethanol gas is lower than that of the film measured in air.
- The resistance of the film decreases with the increase of ethanol gas concentration.

THANK YOU

ACKNOWLEGMENT

The authors wish to acknowledge their deep gratitude to DIKTI, Department of National Education of Indonesian Government for financial support under HIBAH BERSAING program with contract No.014/SP2H/PP/DP2M/III/2008