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Introduction

Definition of Measurement

The notion that measurement is crucial to scieneems a commonplace and
unexceptional observation. Most book-length treatmeof the philosophy of science
include a discussion of the topic. And books forogsbn research methods invariably
have a chapter dealing with the problems associatgd measurement. Yet, the
widespread acknowledgement of the importance ofdgoeasurement has not—until
quite recently —led to the development of systeenahd general approaches to
measurement in the social sciences. Quite the amynthistorically, measurement has
been more of an abstract, almost ritualistic camdestead of being an integral and
central aspect of the social sciences. The coexistef this asymmetric condition of
ritualistic concern but lack of systematic attentwith regard to measurement may be
partially attributable to the way in which thisreis most commonly defined. The most
popular definition of measurement is that provitlgdStevens more than 25 years ago.
"Measurement,” Stevens wrote, "is the assignmentwhbers to objects or events
according to rules" (1951: 22). The problem witls thefinition, from the point of view
of the social scientist, is that, strictly speakingany of the phenomena to be masured are
neither objects nor events. Rather, the phenomenlaet measured are typically too
abstract to be adequately characterized as eilbjects or events.

Thus, for example, phenomena such as politicakcagii, alienation, gross national
product, and cognitive dissonance are too abstoabe considered "things that can be
seen or touched" (the definition of an object) cerety as a "result, consequence, or
outcome” (the definition of an event). In other d&r Stevens's classical definition of
measurement is much more appropriate for the palyian the social sciences. Indeed,
it may have inadvertently impeded efforts to fomystematically on measurement in
social research. 1 A definition of measurement iatore relevant to the social sciences
is that suggested by Blalock's observation thatidkagical theorists often use concepts
that are formulated at rather high levels of alotima. These are quite different from the
variables that are the stock-in-trade of empirgmdiologists. ... The problem of bridging
the gap between theory and research is then seemeasf measurement error [1968: 6;
12]. In other words, measurement is most usefuikwed as the "process of linking
abstract concepts to empirical indicants" (Zelled £armines, forthcoming), as a process
involving an "explicit, organized plan for classify (and often quantifying) the
particular sense data at hand—the indicants—in deofnthe general concept in the
researcher's mind" (Riley, 1963: 23). This defaritmakes it clear that measurement is a
process involving both theoretical as well as erogirconsiderations. From an empirical
standpoint, the focus is on the observable respenshether it takes the form of a mark



on a self-administered questionnaire, the behaeicorded in an observational study, or
the answer given to an interviewer. Theoreticallyterest lies in the underlying
unobservable (and directly unmeasurable) concegitighrepresented by the response.
Thus, using the above examples, the "mark™ mayessmt one's level of self-esteem, the
"behavior" may indicate one's level of personagnation during a conflict situation, and
the "answer" may signify one's attitude toward Pl Carter. Measurement focuses on
the crucial relationship between the empiricallyougrded indicator(s)—that is, the
observable response—and the underlying unobservaaecept(s). When this
relationship is a strong one, analysis of empirigdicators can lead to useful inferences
about the relationships among the underlying catiscdp this manner, social scientists
can evaluate the empirical applicability of thematpropositions. On the other hand, if
the theoretical concepts have no empirical referehien the empirical tenability of the
theory must remain unknown. But what of those sibma in which the relationship
between concept and indicators is weak or faultyauch instances, analysis of the
indicators can lead possibly to incorrect inferencand misleading conclusions
concerning the underlying concepts. Most assuragdlgarch based on such inadequate
measurement models does not result in a greatesrstacding of the particular social
science phenomenon under investigation. Viewed fthis perspective, the auxiliary
theory specifying the relationship between concaptsindicators is equally important to
social research as the substantive theory linkorgcepts to one another. Reliability and
Validity Defined Given the above definition of measment, the question naturally
arises as to how social scientists can determim@xtent to which a particular empirical
indicator (or a set of empirical indicators) re@es a given theoretical concept. How,
for example, can one evaluate the degree to whiehfour items used to measure
political efficacy in The American Voter (Campbetlal., 1960) accurately represent that
concept? Stated somewhat differently, what areddserable qualities of any measuring
procedure or instrument? At the most general lethedre are two basic properties of
empirical measurements. First, one can examine réi@ability of an indicator.
Fundamentally, reliability concerns the extent thickh an experiment, test, or any
measuring procedure yields the same results orategerials. The measurement of any
phenomenon always contains a certain amount ofceharror. The goal of error-free
measurement—while laudable—is never attained inaaag of scientific investigation. 2
Instead, as Stanley has observed, "The amountamiceherror may be large or small, but
it is universally present to some extent. Two sétmeasurements of the same features of
the same individuals will never exactly duplicatacke other" (1971: 356). Some
particular sources of chance error will be discdda&er in this chapter. For the moment
it is simply necessary to realize that becauseatepemeasurements never exactly equal
one another, unreliability is always present tteast a limited extent. But while repeated
measurements of the same phenomenon never predspligcate each other, they do
tend to be consistent from measurement to measuteffbe person with the highest
blood pressure on a first reading, for example] teihd to be among those with the
highest reading on a second examination given éx¢ day. And the same will be true
among the entire group of patients whose blood spresis being recorded: Their
readings will not be exactly the same from one mesment to another but they will tend
to consistent. This tendency toward consistencydoin repeated measurements of the
same phenomenon is referred to as reliability. Moee consistent the results given by



repeated measurements, the higher the reliabilitieomeasuring procedure; conversely
the less consistent the results, the lower thabiilly. But an indicator must be more
than reliable if it is to provide an accurate reygrgation of some abstract concept. It
must also be valid. In a very general sense, argsareng device is valid if it does what
it is intended to do. An indicator of some abstrembcept is valid to the extent that it
measures what it purports to measure. For exarim@eCalifornia F Scale (Adorno et al.,
1950) is considered a valid measure of adhereneaitfworitarian beliefs to the degree
that it does measure this theoretical concept rathan reflecting some other
phenomenon. Thus, while reliability focuses on atipalar property of empirical
indicators—the extent to which they provide cormsist results across repeated
measurements—validity concerns the crucial relatigmbetween concept and indicator.
This is another way of saying that there are alrabsays theoretical claims being made
when one assesses the validity of social scien@sunes. Indeed, strictly speaking, one
does not assess the validity of an indicator bilterathe use to which it is being put. For
example, an intelligence test may be valid for ssigg the native intellectual potential of
students, but it would not necessarily be validdibrer purposes, such as forecasting their
level of income during adulthood (Nunnally, 1978).

Just as reliability is a matter of degree, alswaailgdity. Thus, the objective of attaining a
perfectly valid indicator—one that represents théended, and only the intended,
concept—is unachievable. Instead, validity is atemabf degree, not an all -or-none
property. Moreover, just because an indicator isegeliable, this does not mean that it
is also relatively valid. For example, let us assuimat a particular yardstick does not
equal 36 inches; instead, the yardstick is 40 iadbeg. Thus, every time this yardstick is
used to determine the height of a person (or opjécsystematically underestimates
height by 4 inches for every 36 inches. A persom whsix feet tall according to this
yardstick, for example, is actually six feet eighthes in height. This particular
yardstick, in short, provides an invalid indicatiohheight. Note, however, that this error
of 4 inches per yard will not affect the relialyilof the yardstick since it does not lead to
inconsistent results on repeated measurementshé®aoontrary, the results will be quite
consistent although they will obviously be incotrda short, this particular yardstick
will provide a quite reliable but totally invalidndication of height. Random and
Nonrandom Measurement Error There are two basidskaf errors that affect empirical
measurements: random error and nonrandom errorddRarerror is the term used to
designate all of those chance factors that confenadneasurement of any phenomenon.
The amount of random error is inversely relatedthe degree of reliability of the
measuring instrument. To take a practical exampla, scale gives grossly inaccurate
indications of the weight of objects—sometimes tiyeaverweighing them and other
times underweighing them—then the particular sabpite unreliable. Similarly, if the
shots fired from a well-anchored rifle are scatienedely about the target, then the rifle
is unreliable. But if the shots are concentratemiad the target, then the rifle is reliable.
Thus, a highly reliable indicator of a theoreticaihcept is one that leads to consistent
results on repeated measurements because it dodkictoate greatly due to random
error. While a formal discussion of random errod és affect on reliability estimation
will be presented later in this volume, it is imfaont for present purposes to make two
observations about random error. First, indicat@gays contain random error to a
greater or lesser degree. That is, the very prooésseasurement introduces random



error to at least a limited extent. The distinctiamong indicators, therefore, is not
whether they contain random error, but rather titerg to which they contain random
error. The second point that needs to be emphasizéoht, as suggested above, the
effects of random error are totally unsystematicciaracter. Referring to the earlier
example of the rifle, random error would be indéchif the shots were as likely to hit
above the target as below it or as likely to hitthe right of the target as to its left.
Similarly, a scale that is affected by random ewidl sometimes overweigh a particular
object and on other occasions underweigh it. Thecip sources of random
measurement error that arise in the social sciemeeto numerous to fully enumerate. 3
In survey research, the kinds of errors that magdsimed to be random include errors
due to coding, ambiguous instructions, differergi@phasis on different words during an
interview, interviewer fatigue, and the like. Bandom error is not limited to survey
research. It also arises in data collected frontiggpant observations, content analysis, as
well as simulations and experiments. Random measnt error is endemic to social
research, as it is to all areas of scientific imigagion including the physical and
biological sciences. The second type of error difé¢cts empirical measurements is
nonrandom error. Unlike random error, nonrandororenas a systematic biasing effect
on measuring instruments. Thus, a scale that alwegyisters the weight of an object two
pounds below its actual weight is affected by nodoem measurement error. Similarly, if
a thermometer always registers 10 degrees higlaer ithshould, then it is evidencing
nonrandom measurement error. A third example ofarmom measurement error can be
given by slightly altering our earlier illustratidocusing on the shots fired from a well-
anchored rifle. If those shots aimed at the bels hit approximately the same location
but not the bull's eye, then some form of nonran@orar has affected the targeting of
the rifle. Nonrandom error lies at the very hedrvalidity. As Althauser and Heberlein
observe, "matters of validity arise when other degt—-more than one underlying
construct or methods factors or other unmeasurethblas—are seen to affect the
measures in addition to one underlying conceptrandom error" (1970: 152; see also
Werts and Linn, 1970). That is, invalidity ariseschuse of the presence of nonrandom
error, for such error prevents indicators from esenting what they are intended to: the
theoretical concept. Instead, the indicators represomething other than the intended
theoretical concept—perhaps a different concepireint Thus, if a researcher uses a
particular scale to represent ideological prefeeebat later discovers that the scale
actually taps party identification, then the scaleobviously an invalid indicator of
ideology. Just as reliability is inversely relatedhe amount of random error, so validity
depends on the extent of nonrandom error preseheénmeasurement process. For
example, high scorers on the California F ScaleofAd et al., 1950) have been shown to
be persons who not only adhere to authoritariarefsebut also "yeasayers" who agree
with just about any assertion. In other words, @aifornia F Scale seems to measure
two different phenomena: adherence to authoritdbgiefs and the personality trait of
acquiescence. 4 The California F Scale, in shartpot a totally valid measure of
adherence to authoritarian beliefs. However, it dae a far less valid measure of this
concept if later research concluded that the soalg measured acquiescence. This is
another way of saying that validity, like reliabjli is a matter of degree, and that it
critically depends on the extent of nonrandom emathe measurement procedure (just
as reliability depends on the amount of random rgrr@onclusion Reliability and



especially validity are words that have a defipitsitive connotation. For anything to be
characterized as reliable and valid is to be deedrin positive terms. So it is with any
type of test, experiment, or measuring procedurd. i reliable and valid, then it has
gone a long way toward gaining scientific acceptareliability concerns the degree to
which results are consistent across repeated nerasuats. An intelligence test is quite
reliable, for example, if an individual obtains amgamately the same score on repeated
examinations. Any measuring instrument is relagiveliable if it is minimally affected
by chance disturbances (i.e., random measurememj.éBut empirical measures that are
reliable have only come half way toward achieviogstific acceptance. They must also
be valid for the purpose for which they are beirgpdi Reliability is basically an
empirical issue, focusing on the performance of ieog) measures. Validity, in contrast,
is usually more of a theoretically oriented isseeduse it inevitably raises the question,
"valid for what purpose?" Thus, a driver's test rbayquite valid as an indicator of how
well someone can drive an automobile but it is plbp quite invalid for many other
purposes, such as one's potential for doing wedbllege. Validity, then, is evidenced by
the degree that a particular indicator measures wksasupposed to measure rather than
reflecting some other phenomenon (i.e., nonrand@asorement error). In the beginning
of this chapter we noted that, following Stevengasurement is usually defined as the
assignment of numbers to objects or events acaptdimules. But as we have seen, for
any measuring procedure to be scientifically usetulmust lead to results that are
relatively reliable and valid. In other words, viesdvfrom a scientific perspective, it is
crucial that the process of assigning numbers jectd or event leads to results that are
generally consistent and fulfills its explicit poge. The same point holds for Blalock's
more social science oriented definition of meas@mmThus, for an indicator to be
useful in social science research, it must leadjute consistent results on repeated
measurements and reflect its intended theoretaatapt. This chapter has outlined some
basic considerations in measurement, especiallsegard to the social sciences. The
remaining chapters in this monograph will expandrughis discussion. Chapter 2 will
consider the various types of validity thar areevaht in the social sciences. Chapter 3
will outline the logical, empirical, and statistidaundations of the theory of (random)
measurement error, and Chapter 4 will discuss ietyanf procedures for assessing the
reliability of empirical measurements. Finally, #ugpendix will discuss and illustrate the
role of factor analysis in assessing the religbdid validity of multitem measures.

2. Validity

In Chapter 1 we defined validity as the extent thiohh any measuring instrument
measures what it is intended to measure. Howewerne pointed out in Chapter 1,
strictly speaking, "One validates, not a test, dutinterpretation of data arising from a
specified procedure” (Cronbach, 1971: 447). Theirdison is central to validation
because it is quite possible for a measuring ingnt to be relatively valid for
measuring one kind of phenomenon but entirely idvedr assessing other phenomena.
Thus, one validates not the measuring instrumeetfibut the measuring instrument in
relation to the purpose for which it is being uséthile the definition of validity seems
simple and straightforward, there are several diffetypes of validity that are relevant in
the social sciences. Each of these types of validikes a somewhat different approach in
assessing the extent to which a measure measuras itvpurports to. The primary
purpose of this chapter is to discuss the threet Imasic types of validity, pointing out



their different meanings, uses, and limitationsite@ion-Related Validity Criterion-
related validity (sometimes referred to as predetralidity) has the closest relationship
to what is meant by the everyday usage of the té&hmat is, this type of validity has an
intuitive meaning not shared by other types ofdili Nunnally has given a useful
definition of criterion-related validity. Criterierelated validity, he notes, "is at issue
when the purpose is to use an instrument to estirsatne important form of behavior
that is external to the measuring instrument ifsiié latter being referred to as the
criterion” (1978: 87). For example, one "validatasiritten driver's test by showing that
it accurately predicts how well some group of pess@an operate an automobile.
Similarly, one assesses the validity of college rboaxams by showing that they
accurately predict how well high school seniorslwid in college instruction. The
operational indicator of the degree of corresponddyetween the test and the criterion is
usually estimated by the size of their correlatibinus, in practice, for some well-defined
group of subjects, one correlates performance entést with performance on the
criterion variable (this correlation, for obviousasons, is sometimes referred to as a
validity coefficient). Obviously the test will nbie useful unless it correlates significantly
with the criterion; and similarly, the higher therelation, the more valid is this test for
this particular criterion. 5 We have said that ttegree of criterion-related validity
depends on the extent of the correspondence betitreetest and the criterion. It is
important to realize that this is the only kind efidence that is relevant to criterion-
related validity. Thus, to take a rather unlikekample, "if it were found that accuracy in
horseshoe pitching correlated highly with succasllege, horseshoe pitching would be
a valid measure for predicting success in collg@&innally, 1978: 88). The obtained
correlation tells the entire story as regards gdte related validity. Thus, criterion-
related validity lends itself to being used in athearetical, empircally dominated
manner. Nevertheless, theory usually enters theegmindirectly because there must be
some basis on which to select the criterion vasgisbNotice, further, that there is no
single criterion-related validity coefficient. Iestd, there are as many coefficients as
there are criteria for a particular measure. Teddlly, one can differentiate between two
types of criterion-related validity. If the criten exists in the present, then concurrent
validity is assessed by correlating a measure l@dtiterion at the same point in time.
For example, a verbal report of voting behaviorlddae correlated with participation in
an election, as revealed by official voting reco@edictive validity, on the other hand,
concerns a future criterion which is correlatednwitie relevant measure. Tests used for
selection purposes in different occupations are,nagure, concerned with predictive
validity. Thus, a test used to screen applicantspfice work could be validated by
correlating their test scores with future perforeanin fulfilling the duties and
responsibilities associated with police work. Nettbat the logic and procedures are the
same for both concurrent and predictive validitye tonly difference between them
concerns the current or future existence of théemon variable. It is important to
recognize that the scientific and practical utiliffiycriterion validation depends as much
on the measurement of the criterion as it doedhemuiality of the measuring instrument
itself. This is sometimes overlooked in settingarmu assessing validation procedures.
Thus, in many different types of training programmsich effort and expense goes into the
development of a test for predicting who will behdéfom the program in terms of
subsequent job performance. Take, for example, reag&ial training program in which



a screening test is used to select those few ithagials who will be given supervisory
responsibilities upon completion of the programwHs their subsequent performance—
the criterion—measured? Often very little attentisrgiven to the measurement of the
criterion. Moreover, it is usually the case thabseguent performance is difficult to
measure under the best of circumstances becauS§gpalach observes, "success on the
job depends on nonverbal qualities that are harastess" (1971: 487). In short, those
employing criterion validation procedures shouldvyie independent evidence of the
extent to which the measurement of the criteriorvaid. 6 Indeed, Cronbach has
suggested that "all validation reports carry thenivey clause, 'Insofar as the criterion is
truly representative of the outcome we wish to maze™ (1971: 488). As we have seen,
the logic underlying criterion validity is quitensple and straightforward. It has been
used mainly in psychology and education for analyzhe validity of certain types of
tests and selection procedures. It should be usexhy situation or area of scientific
inquiry in which it makes sense to correlate scoobtained on a given test with
performance on a particular criterion or set oevaht criteria. At the same time, it is
important to recognize that criterion validationogedures cannot be applied to all
measurement situations in the social sciences.nfdst important limitation is that, for
many if not most measures in the social scientesetsimply do not exist any relevant
criterion variables. For example, what would beappropriate criterion for a measure of
a personality trait such as self-esteem? We knowootpecific type of behavior that
people with high or low self -esteem exhibit sublattit could be used to validate a
measure of this personality trait. Generalizingrfrthis situation, it is not difficult to see
that criterion validation procedures have ratherited usefulness in the social sciences
for the simple reason that, in many situationsyeh&re no criteria against which the
measure can be reasonably evaluated. Moreoves, dlear that the more abstract the
concept, the less likely one is to discover an appate criterion for assessing a measure
of it. In sum, however desirable it may be to eatduthe criterion-related validity of
social science measures, it is simply inapplicablemany of the abstract concepts used in
the social sciences. Content Validity A second dagpe of validity is content validity.
This type of validity has played a major role iretdevelopment and assessment of
various types of tests used in psychology and éslheeducation but has not been
employed widely by political scientists or sociakig. Fundamentally, content validity
depends on the extent to which an empirical measeme reflects a specific domain of
content. For example, a test in arithmetical openatwould not be content valid if the
test problems focused only on addition, thus neglgcsubtraction, multiplication, and
division. By the same token, a content-valid measofr Seeman's (1959) concept of
alienation should include attitudinal items représgy powerlessness, normlessness,
meaninglessness, social isolation, and self estrapgt. The above examples indicate
that obtaining a content- valid measure of any phe&non involves a number of
interrelated steps. First, the researcher musbheeta specify the full domain of content
that is relevant to the particular measurementsiun. In constructing a spelling test for
fourth graders, for example, one must specify faithe words that a fourth grader should
know how to spell. Second, one must sample spewsiicls from this collection since it
would be impractical to include all of these wordsa single test. While it would be
possible to select the sample of words for theligstimple random procedures, it might
be important under certain circumstances to "@repie" particular types of words (e.qg.,



nouns). Thus, the person constructing the test meistareful to specify the particular
sampling procedures to be employed. Finally, oheewords have been selected, they
must be put in a form that is testable. For exampie might use a multiple-choice
procedure whereby the correct spelling of the waxalild be included with several
incorrect spellings with the students' having toase the former. What should emerge
from this process is a spelling test that adequaeglects the domain of content that is to
be measured by the test. 7 To take a different pignhow would one go about
establishing a content-valid measure of an attitsileh as alienation? Presumably, one
would begin by thoroughly exploring the availabieerature on alienation, hoping
thereby to come to an understanding of the phenomeA thorough search and
examination of the literature may suggest, for examthat alienation is properly
conceived of in terms of the five dimensions prgmbdy Seeman: powerlessness,
normlessness, meaninglessness, social isolatiah,sealf estrangement. In addition, it
may be useful to further subdivide these dimensidDse may want to subdivide
powerlessness, for example, into its political,i@p@and economic aspects. It is then
necessary to construct items that reflect the nmggassociated with each dimension and
each subdimension of alienation. It is impossiblegecify exactly how many items need
to be developed for any particular domain of contBut one point can be stated with
confidence: It is always preferable to construa toany items rather than too few;
inadequate items can always be eliminated, butionarely in a position to add "good"
items at a later stage in the research when tlggnatipool of such items is inadequate.
From the above discussion, it should be cleardbtblishing a content-valid measure of
an attitude such as alienation is far more diffidilan establishing a content-valid
achievement or proficiency test in some area (sscthe spelling test above). There are
two subtle but important differences between the situations. First, however easy it
may be to specify the domain of content relevaniatspelling test, the process is
considerably more complex when dealing with thetralbs concepts typically found in
the social sciences. Indeed, it is difficult tonthiof any abstract theoretical concept—
including alienation—for which there is an agre@dm domain of content relevant to the
phenomenon. Theoretical concepts in the sociahsegehave simply not been described
with the required exactness. The second, relatetlgm is that, in measuring most
concepts in the social sciences, it is impossibleaimple content. Rather, one formulates
a set of items that is intended to reflect the eontof a given theoretical concept.
Without a random sampling of content, however, gt impossible to insure the
representativeness of the particular items. Th#tgehces reveal quite clearly the rather
fundamental limitations of content validity. In dent validity, as Cronbach and Meehl
observe, the "acceptance of the universe of comdsntlefining the variable to be
measured is essential" (1955:282). As we havetiited, however easy this may be to
achieve with regard to reading or arithmetic teistsas proved to be exceeding difficult
with respect to measures of the more abstract phena that tend to characterize the
social sciences. Second, there is no agreed ueniam for determining the extent to
which a measure has attained content validityhtnabsence of well -defined, objective
criteria, Nunnally has noted that "inevitably contealidity rests mainly on appeals to
reason regarding the adequacy with which importantent has been sampled and on the
adequacy with which the content has been castanfdhm of test items" (1978: 93).
Indeed, Bohrnstedt has argued that "while we emdbtisally endorse the procedures, we



reject the concept of content validity on the gmbarthat there is no rigorous way to
assess it" (forthcoming). In sum, while one shaitémpt to insure the content validity
of any empirical measurement, these twin problemgehprevented content validation
from becoming fully sufficient for assessing theidity of social science measures.
Construct Validity We have suggested that bothedoh validity and content validity
have limited usefulness for assessing the validitempirical measures of theoretical
concepts employed in the social sciences. It idypfar this reason that primary attention
has been focused on construct validity. As Cronbactt Meehl observe, "Construct
validity must be investigated whenever no criteriwruniverse of content is accepted as
entirely adequate to define the quality to be mesBu(1955: 282). Construct validity is
woven into the theoretical fabric of the socialescies, and is thus central to the
measurement of abstract theoretical concepts. thaeewe will see, construct validation
must be conceived of within a theoretical cont&tndamentally, construct validity is
concerned with the extent to which a particular snea relates to other measures
consistent with theoretically derived hypothesesceoning the concepts (or constructs)
that are being measured. While the logic of cowmstmalidation may at first seem
complicated, it is actually quite simple and sthgfigrward, as the following example
illustrates. Suppose a researcher wanted to eeathatconstruct validity of a particular
measure of self-esteem—say, Rosenberg's self-esteala. Theoretically, Rosenberg
(1965) has argued that a student's level of sedteegn is positively related to
participation in school activities. Thus, the thetaral prediction is that the higher the
level of self -esteem, the more active the studelhbe in school -related activities. One
then administers Rosenberg's self-esteem scalgrimup of students and also determines
the extent of their involvement in school actistieThese two measures are then
correlated, thus obtaining a numerical estimatéhefrelationship. If the correlation is
positive and substantial, then one piece of evidemas been adduced to support the
construct validity of Rosenberg's self-esteem sél€onstruct validation involves three
distinct steps. First, the theoretical relationgbgbween the concepts themselves must be
specified. Second, the empirical relationship betwthe measures of the concepts must
be examined. Finally, the empirical evidence mustidterpreted in terms of how it
clarifies the construct validity of the particulameasure. It should be clear that the
process of construct validation is, by necessiitgoty -laden. Indeed, strictly speaking, it
is impossible to "validate"” a measure of a condepthis sense unless there exists a
theoretical network that surrounds the concept.vitirout this network, it is impossible
to generate theoretical predictions which, in tulead directly to empirical tests
involving measures of the concept. This shouldleadl to the erroneous conclusion that
only formal, fully developed theories are relevemtonstruct validation.

On the contrary, as Cronbach and Meehl observe:|ddfie of construct validation is
involved whether the construct is highly systenetinr loose, used in ramified theory or
a few simple propositions, used in absolute prdes or probability statements [1955:
284]. What is required is that one be able to fateral theoretically derived hypotheses
involving the particular concept. The more elaberétte theoretical framework, of
course, the more rigorous and demanding the evafuat the construct validity of the
empirical measure. Notice that in the self-estegramgple discussed above, we concluded
that the positive association between Rosenbeelfesteem scale and participation in
school activities provided one piece of evidengepsuting the construct validity of this



measure. Greater confidence in the construct walidi this measure of self -esteem
would be justified if subsequent analyses revealadherous successful predictions
involving diverse, theoretically related variableshus, construct validity is not
established by confirming a single prediction offedént occasions or confirming many
predictions in a single study. Instead, constriadtdation ideally requires a pattern of
consistent findings involving different researchesing different theoretical structures
across a number of different studies. 9 But whaa isesearcher to conclude if the
evidence relevant to construct validity is neg&ivighat is, if the theoretically derived
predictions and the empirical relationships areisistent with each other, what is the
appropriate inference? Four different interpretagi@are possible (Cronbach and Meehl,
1955). The most typical interpretation of such riegaevidence is that the measure lacks
construct validity. Within this interpretation, ig concluded that the indicator does not
measure what it purports to measure. This doesmeain, of course, that the indicator
does not measure some other theoretical consbutpnly that it does not measure the
construct of interest. In other words, as negagivielence accumulates, the inference is
usually drawn that the measure lacks constructdiglias a measure of a particular
theoretical concept. Consequently, it should notided as an empirical manifestation of
that concept in future research. Moreover, previasgearch employing that measure of
the concept is also called into serious questianfottunately, however, this is not the
only conclusion that is consistent with negativédermce based on construct validation.
Negative evidence may also support one or moréeffallowing inferences. First, the
theoretical framework used to generate the empipicadictions is incorrect. To continue
with the earlier example, it may be the case thrath a theoretical perspective, self-
esteem should not be positively related to pawitogm in school activities. Therefore, a
nonpositive relationship between these variablesildvanot undermine the construct
validity of Rosenberg's self-esteem scale but rattest doubt on the underlying
theoretical perspective. Second, the method oreoiare used to test the theoretically
derived hypotheses is faulty or inappropriate. Bpsht is the case that, theoretically, self
-esteem should be positively associated with gpetion in school activities and that the
researcher has used a reliable and valid measuselfeésteem. However, even under
these circumstances, the hypothesis will stillt®tonfirmed unless it is tested properly.
Thus, to take a simple example, the negative ecEleould be due to the use of an
inappropriate statistical technique or using theppr technique incorrectly. Third, the
final interpretation that can be made with respeategative evidence is that it is due to
the lack of construct validity or the unreliability some other variable(s) in the analysis.
In a very real sense, whenever one assesses tls&rumnvalidity of the measure of
interest, one is also evaluating simultaneouslydbwstruct validity of measures of the
other theoretical concepts. In the self -esteemmg@i@ it could be the case that
Rosenberg's self -esteem scale has perfect constalidity but that the measure of
"participation in school activities" is quite inw@lor unreliable. Unfortunately, there is no
foolproof procedure for determining which one (oore) of these interpretations of
negative evidence is correct in any given instaritds the total configuration of
empirical evidence that lends credence to onepreation rather than another. The first
interpretation, that the measure lacks construladitsg becomes increasingly compelling
as grounds for accepting the other interpretatlmeome untenable. Most important, to
the degree possible, one should assess the cdngalidity of a particular measure in



situations in which the other variables are welaseged (i.e., have relatively high
validity and reliability). Only in these situationsan one confidently conclude that
negative evidence is probably due to the absenamo$truct validity of a particular
measure of a given theoretical concept. Theoréficalevant and well -measured
external variables are thus crucial to the assessaid¢he construct validity of empirical
measurements (Curtis and Jackson, 1962; Sulliv@inl,11974; Balch, 1974). The logic
of construct validation usually implies that thdatenship among multiple indicators
designed to represent a given theoretical concegt theoretically relevant external
variables should be similar in terms of directistiength, and consistency. For example,
two indicators, both of which are designed to measwcial status, should have similar
correlations with political interest, if the lattés a theoretically appropriate external
variable for the former. Conversely, if the two engal indicators of social status relate
differentially to external variables, this impliggat the indicators are not representing the
same theoretical concept. Instead, this patterangfirical relationships would suggest
that the two indicators represent different aspettsocial status or different concepts
entirely for they do not behave in accordance Witoretical expectations. It is thus easy
to see that construct validation is enhanced if leee obtained multiple indicators of all
of the relevant variables. 10 Conclusion In thiamtler we have discussed the three basic
types of validity: content validity, criterion-reééd validity, and construct validity. Both
content validity and criterion-related validity hevimited usefulness in assessing the
guality of social science measures. Content vglidve argued, is not so much a specific
type of validity as it is a goal to be achievearder to obtain valid measurements of any
type—namely, that the empirical measure coversltmeain of content of the theoretical
concept. Content validity, however, provides no huodtor procedure to determine the
extent to which this goal is achieved in practitbus, in the final analysis, it is not
possible to determine the specific extent to whah empirical measure should be
considered content valid. On the contrary, contatitlity, by necessity, is an imprecise
standard against which to evaluate the validityeofpirical measurements. Criterion-
related validity is similarly limited regarding gemlized applicability in the social
sciences. This is not to argue that there are aghia practical circumstances under
which it makes a good deal of sense to validateeasore by comparing performance on
that measure with performance on a particular reoibevariable. Thus, it is a reasonable
strategy to compare airplane pilots' performanceaowritten examination with their
ability to fly an airplane in order to validate thitten exam. Yet, as we have pointed
out, the vast majority of social science measumes reot of this character. Instead,
because they usually represent abstract theoreticaepts, there are no known criterion
variables against which they can be compared. hirast to both content validity and
criterion-related validity, construct validationshgeneralized applicability in the social
sciences. The social scientist can assess the rgonstalidity of an empirical
measurement if the measure can be placed in thedretontext. Thus, construct
validation focuses on the extent to which a meagedorms in accordance with
theoretical expectations. Specifically, if the peniance of the measure is consistent with
theoretically derived expectations, then it is doded that the measure is construct valid.
On the other hand, if it behaves inconsistentlyhwiteoretical expectations, then it is
usually inferred that the empirical measure doesrapresent its intended theoretical
concept. Instead, it is concluded that the measacks construct validity for that



particular concept. This chapter has focused ordifierent types of validity, pointing
out their different meanings, uses, and limitatiombe next chapter will present a
theoretical framework that can be used to assess rdfiability of empirical
measurements.

3. Classical Test Theory

The purpose of this chapter is to present the fatiods of a model for assessing random
measurement error. This model is referred to assidal test score theory, classical test
theory, or simply test theory. Our discussion d@ssical test theory is, by design, an
elementary one. For much more extensive discussibtigs general topic, see Lord and
Novick (1968), Stanley (1971), and Nunnally (19783 we pointed out in Chapter 1,
random error is involved in any type of measurem$otial scientists of course strive to
eliminate as much random error from their measunésnas possible, but even the most
refined measuring instruments and techniques aorahileast a limited amount of
random error. Reliability of Measurements Sincedman error is an element that must be
considered in the measurement of any phenomenobggia with the basic formulation
where X is the observed score, t is the true s@nd,e is the random error. Equation 1
says simply that every observed score on any miegsunstrument is made up of two
guantities: a true score, one that would be obthiffethere were no errors of
measurement, and a certain amount of random affbile the meaning of an observed
score is obvious, what is the nature of a true es@nd random error? True Scores
Usually, true scores are conceived of as hypothletimobservable quantities that cannot
be directly measured. Rather, a person's true gsaitee average score that would be
obtained if the person were remeasured an infiuteber of times on that variable.

No single measurement would pinpoint the true sexactly but the average of an
infinite number of repeated measurements wouldgo@lgo the true score. But since it is
impossible to ever obtain an infinite number ofaaed measurements but only a finite
number, true scores are hypothetical, not reallittgga Nevertheless, they are central to
classical test theory and reliability estimatiorandom Error Equation 1 says that any
particular observed score will not equal its treers because of random disturbances.
These disturbances mean that on one testing ooccagierson's obtained score would be
higher than his true score while on another occahkis observed score would be lower
than his true score. Moreover, the "positive" esnepuld be just as likely to occur as the
"negative" errors, and their magnitudes would beilar as well. In short, the observed
scores would be distributed symmetrically above batbw the true score. Therefore,
these errors are expected to cancel each othendbe long run—to have a mean or
average score of zero. Intuitively, this is whatisant by random measurement error. 12
These assumptions about true scores and randomcarrde represented more formally
by the following equations: (a) the expected (meam)r score is zero: E(e) = 0; (b) the
correlation between true and error scores is zef(e) = 0; (c) the correlation between
the error score on the measurement and the true scoa second is zero: r (el,t2) = 0;
and (d) the correlation between errors on distmeasurements is zero: r (el,e2) = 0. In
these assumptions, E represents the expected oalleng-run” mean of the variable
and r is the correlation between two variables population. From these assumptions,
most particularly assumption b above, it followattthe expected value of the observed
score is equal to the expected value of the troeesdn formula form: E(X) = E(t) +



E(e), but since E(e) = 0, then, The above resdtsam to repeated measurements of a
single variable for a single person. But reliapiliefers to the consistency of repeated
measurements across persons rather than withimgke gerson. Consequently, Equation
1 must be rewritten so that it does not pertaia gingle observed score, true score, and
random error but rather to the variance of thosp@ries. Thus But since assumption b
above says that the correlation (and covarianceydsn true scores and errors is zero,
then 2COV(t,e) = 0. Consequently, That is, the nleskvariance equals the sum of the
true score and error variances. Given this, the ddttrue to observed variance is called
the reliability of X as a measure of T. Reliabilitgn also be expressed in terms of the
error variance as follows: This equation followseditly from Equations 3 and 4 since
Equation 5 makes it obvious that the reliabilityaofneasure varies between 0 and 1. If all
observed variance is contaminated with random gtten the reliability is zero since 1 —
(1/1) = 0. Conversely, if there is no random eirwmolved in the measurement of some
phenomenon, then the reliability equals 1 sinc@/1)(= 1. In sum, the greater the error
variance, relative to the observed variance, theeclthe reliability is to zero. But when
the error variance approaches zero, then the iéljalapproaches unity. Finally,
rearranging Equation 4, it is easy to see that )ahe true score variance of X equals
the observed variance multiplied by the reliabibfythe measure. Thus, if one knew the
reliability of a measure and its observed variatken it would be easy to estimate its
unobserved true score variance. Parallel Measursnidre above discussion has pointed
out what is meant by true scores and random endhas shown how reliability can be
expressed in terms of the variances of these prepeBut we have not yet described
how one can estimate the reliability of a measiihes we propose to do in this section,
showing that an estimate of a measure's relialmlty be obtained by correlating parallel
measurements. Two measurements are defined adepdirahey have identical true
scores and equal variances. 13 Symbolically, theand X' are parallel if X =t + e and
X'=t+ e where and t = t. It may be useful timkhof parallel measurements as being
distinct from one another but similar and compagablimportant respects. For example,
consider the following two items from Rosenberd'865) self-esteem scale: (1) | feel
that | have a number of good qualities and (2l teat I'm a person of worth, at least on
an equal plane with others. A respondent with Isiglfresteem will usually answer "often
true" while a respondent with low self- esteem wdlally answer "seldom true" to these
statements, except, of course, for random fluatnati However, this is precisely the
point. If the response to the items differ onlytwiéspect to random fluctuations, then the
items are considered to be parallel. Parallel itaresfunctions of the same true score and
the differences between them are the result of lpusndom error. The correlation
between parallel measures can be expressed in tdrersor, observed, and true scores
as follows: Because, by assumption, errors are romleted with true scores and
uncorrelated with each other and the standard tiengaof parallel measures are equal,
this expression reduces to: The correlation betvgeeallel measures is equal to the true
score variance divided by the observed variance. ifitfporance of this result is that it
allows the unobservable true score variance tocpeessed in terms of r xx" and s 2x *—
both of which are observable. In formula form: Tthee score variance is equal to the
product of the observed variance and the correldigiween parallel measures. Recalling
from Equation 4 that reliability is r x = s t2/sX2, follows that the estimate of reliability
is simply the correlation between parallel meassiese The result given in Equation 10



is quite important in estimating the reliability @mnpirical measurements. It indicates that
if we have as few as two items of an single concep single item measured at two
points in time, we can estimate the reliabilityephpirical measurements. It should also
be clear that the greater the number of separatsumnements of a given phenomenon,
the more accurate (and higher) the estimate ofeligbility will be. Of course this
estimate will only be accurate if the items areualty parallel—that is, have identical
true scores and equal error variances. It shosldl lag¢ noted that the correlation between
the true and observed scores is equal to the sgoaref the reliability which, in turn,
equals the square root of the correlation betweeallpl measures. That is, Finally, it
should be recognized that given the assumptioctassical test theory and the definition
of parallel measures (for a proof see Lord and Blgv1968) that where y is any second
measure and everything else is as above. Thahéscaorrelation between a parallel
measure and some other measure—for example, @yartcriterion variable—cannot
exceed the square root of the parallel measurkebitity. This means that the square
root of the reliability of a measure provides ampepbound for its correlation with any
other measure. For example, a measure with a Héjabf .81 can never correlate
greater than .9 with another variable. This denrates that reliability and criterion-
related validity are closely related. Equation 12 ademonstrates that, as Bohrnstedt
observes, "If one cannot reliably measure anud#it he will never be able to predict
actual behavior with it* (1970: 97). Conclusion Fhehapter has discussed the basic
foundations of classical test theory, showing hblgads to the definition of reliability as
being the ratio of the true to observed variandee T™ore true variance, relative to
observed variance, the greater the reliabilitylef measure. We also showed that one
way to estimate the reliability of a measure isdampute the correlation between parallel
measurements. In the next chapter we will dischesdifferent methods for estimating
the reliability of empirical measurements. Thes#edent methods are based on the
logical foundations of classical test theory, asimed in this chapter.

4. Assessing Reliability

In this chapter we discuss the four basic methamsektimating the reliability of
empirical measurements. These are the retest methedlternative-form method, the
split-halves method, and the internal consisten@thod. This chapter also discusses
how reliability estimates can be used to "corremitrelations for unreliability due to
random measurement error. Finally, we briefly eatduhe strengths and weaknesses of
the various methods for assessing reliability. Rekethod One of the easiest ways to
estimate the reliability of empirical measuremestby the retest method in which the
same test is given to the same people after ac@fidcime. 14 One then obtains the
correlation between scores on the two administnatwf the same test. The retest method
is diagramed in Figure 1. It is presumed that rasps to the test will correlate across
time because they reflect the same true variabléhd equations for the two tests may be
written as follows: But recalling that the defiomi of parallel measurements specifies
thatt =t and s el2 = se22* and that by the assangoof classical test theory r(el,t2) =
0, and r (el,e2) = 0, it can be shown that follguxactly the same logic used to show
that the correlation between parallel measuresledba reliability coefficient (see the
derivation of Equation 10 above). That is, theatality is equal to the correlation
between the scores on the same test obtained gtdints in time.



Figure 1: A Schematic Representation of the Réfiethod for Estimating Reliability If
one obtains exactly the same results on the twarastnations of the test, then the retest
reliability coefficient will be 1.00. But, invarid§y the correlation of measurements
across time will be less than perfect. This ochesause of the instability of measures
taken at multiple points in time. For example, espa may respond differently to a set of
indicators used to measure self -esteem from ome ttb another because "the respondent
may be temporarily distracted, misunderstand thearimg of an item,” feel
uncomfortable due to someone else being presedtsarforth (Bohrnstedt, 1970: 85).
All of these conditions reduce the reliability ghpirical measurements. While test-retest
correlations represent an intuitively appealingcpdure by which to assess reliability,
they are not without serious problems and limitadio Perhaps most important,
researchers are often only able to obtain a measiagphenomenon at a single point in
time. Not only can it be unduly expensive to obtaieasurements at multiple points in
time but it can be impractical as well. Even iftietest correlations can be computed,
their interpretation is not necessarily straightfard. A low test-retest correlation may
not indicate that the reliability of the test isMdout may, instead, signify that the
underlying theoretical concept itself has chandeat. example, one's attitude toward
capital punishment may be very different before aftér the person has viewed an
execution. But true change is interpreted as measemt instability in the assessment of
retest reliability. Moreover, the longer the tinmeirval between measurements, the more
likely that the concept has changed. In other woadraive interpretation of test-retest
correlations can drastically underestimate the ekegif reliability in measurements over
time by interpreting true change as measuremetdbiigy. 15 A second problem that
affects test-retest correlations and also leadtetated reliability estimates is reactivity.
Reactivity refers to the fact that sometimes they yeocess of measuring a phenomenon
can induce change in the phenomenon itself. Thuspeasuring a person's attitude at
time 1, the person can be sensitized to the subjeér investigation and demonstrate a
change at time 2, which is due solely to the eanieasurement. For example, if a person
is interviewed about the likelihood of voting in approaching election at time 1, the
person might decide to vote (at time 2) and cdsllt (at time 3) merely because he or
she has been sensitized to the election. In ti8e,dhe test-retest correlation will be
lower than it would be otherwise because of redgtivhile the test-retest correlations
can certainly underestimate the reliability of engal measurements, the more typical
problem is overestimation due to memory. For examfie person's memory of his
responses during the first interview situation iste likely to influence the responses
which he gives in the second interview. In otherdgo if the time interval between
measurements is relatively short, the subjects reitember their earliest responses and
will appear more consistent than they actually &demory effects lead to inflated
reliability estimates. In fact, Nunally believesathiduring the two-week's to one-month's
time in which it is advisable to complete both itregs, memory is likely to be a strong
factor, thus, the retest method will often provédsubstantial overestimate of what would
be obtained from the alternative-form method" (1988). Alternative-Form Method The
alternative-form method is used extensively in adion to estimate the reliability of all
types of tests. In some ways, it is similar to th&est method in that it also requires two
testing situations with the same people. Howevatiffers from the retest method in one
very important regard: The same test is not givethe second testing but an alternative



form of the same test is administered. These twodmf the test are intended to measure
the same thing. Thus, for example, the two testghtrfiocus on arithmetical operations
with each containing 25 problems that are at apprately the same level of difficulty.
Indeed, the two forms should not differ from eatheo in any systematic way. One way
to help insure this is to use random procedureselect items for the different forms of
the test. The correlation between the alternativen$ provides the estimate of reliability.
It is recommended that the two forms be adminigteabout two weeks apart, thus
allowing for day to-day fluctuations in the perstm occur (Nunnally, 1964). The
alternative-form method for assessing reliabilgybviously superior to the simple retest
method, primarily because it reduces the extemttizh individuals' memory can inflate
the reliability estimate. However, like the retesethod, the alternative-form method
when used for only two testing administrations does allow one to distinguish true
change from unreliability of the measure. For tieigson, the results of alternative-form
reliability studies are easier to interpret if foeenomenon being measured is relatively
enduring, as opposed to being subject to rapidradidal alteration. The basic limitation
of the alternative-form method of assessing rdiigbis the practical difficulty of
constructing alternative forms that are parallels loften difficult to construct one form
of a test much less two forms that display the eriogs of parallel measurements.
Split-Halves Method

Both the retest and the alternative-form methods$sessing reliability require two test
administrations with the same group of people.dntiast, the split-halves method can be
conducted on one occasion. Specifically, the teg¢alof items is divided into halves and
the scores on the halves are correlated to obtagstimate of reliability. The halves can
be considered approximations to alternative forfssa practical example, let us assume
that a teacher has administered a six-word speiéagto his students and would like to
determine the reliability of the total test. He slibdivide the test into halves, determine
the number of words that each student has spetlzédatly in each half, and obtain the
correlation between these scores. But as we haeendeed previously, this correlation
would be the reliability for each half of the teather than the total test. Therefore, a
statistical correction must be made so that theheacan obtain an estimate of the
reliability of the six-word test, not just the tkrgvord half tests. This "statistical
correction” is known as the Spearman-Brown propHeoyula, derived independently
by Spearman (1910) and Brown (1910). In particidarce the total test is twice as long
as each half, the appropriate Spearman-Brown poypfeemula is: where r xx" is the
reliability coefficient for the whole test and r'xg the split-half correlation. Thus, if the
correlation between the halves is .75, the religbfbr the total test is: r xx" = [(2)
(.75))/(2 + .75) = 1.50/1.75 = .857.

The estimated reliability of the six-item test887. It is not difficult to see that the split-
half reliability varies between 0 and 1, taking these limits if the correlation between
the halves is .00 or 1.00, respectively. The mamegal version of the Spearman-Brown
prophecy formula (of which Equation 16 is a specasde) is: This gives the reliability of
a scale which is N times longer than the origiradle. Thus, if the reliability of the
original scale is .40, then a scale five times tbag has a reliability of .77 as follows: To
take another example, if a five-item split-half redates .2 with another five-item split-
half, then the estimated reliability for a scaleirfdimes that long would equal .5 as
follows: "This means that, if one form of a testrgmsed of 5 items correlates .2 with a



parallel form of that test that also has 5 iterhenta form composed of 20 items similar
to the initial 5 should correlate .5 with a parafiem containing 20 items" (Stanley,
1971: 395). By rearranging Equation 17 one can @étermine the number of items that
would be needed to attain a given reliability oravbhe split-half must be, given a
desired reliability and test length. To estimate ttumber of items required to obtain a
particular reliability, one uses the following fauta: where r xx" is the desired
reliability; r xx' is the reliability of the existg test; and N is the number of times test
would be lengthened to obtain reliability of r xxThus, if a 10-item test has a reliability
of .60, then the estimated lengthening requiredbt@ain a reliability of .80 would be: In
other words, approximately 27 items would be rezpito reach a reliability of .80. There
is a certain indeterminancy in using the split-kaltechnique to estimate reliability due
to the different ways that the items can be grouptalhalves. The most typical way to
divide the items is to place the even- numberedstan one group and the odd-numbered
items in the other group. But other ways of pamttng the total item set are also used
including separately scoring the first and secoitlvds of the items and randomly
dividing the items into two groups. In fact, forl@-item scale, there are 125 different
possible splits. The point is that each split vaitbbably result in a slightly different
correlation between the two halves which, in tuwil lead to a different reliability
estimate. Moreover, since the number of differgiitsis a function of the number of
total items, obtaining a consistent estimate aébdity increases as the number of items
increases. Thus, using the split-halves methasd qgtite probable that different reliability
estimates will be obtained—even though the sanmasitare administered to the same
individuals at the same time. Internal Consisteigthod We noted above that an
important limitation of the split-halves method adsessing reliability is that reliability
coefficients obtained from different ways of subding the total set of items would not
be the same. For example, it is quite possible tthatcorrelation between the first and
second halves of the test would be different froun ¢orrelation between odd and even
items. However, there are methods for estimatifighiity that do not require either the
splitting or repeating of items. Instead, thesehmegues require only a single test
administration and provide a unique estimate ofiabdlty for the given test
administration. As a group, these coefficients @kerred to as measures of internal
consistency. By far the most popular of these Iodltg estimates is given by Cronbach's
alpha (Cronbach, 1951), which can be expressealbsvé: where N is equal to the
number of items; Ss 2 (Y i) is equal to the suniterh variances; and s 2x * is equal to
the variance of the total composite. If one is vimgkwith the correlation matrix rather
than the variance-covariance matrix, then alphaigesl to the following expression:
where N is again equal to the number of items ahds pqual to the mean interitem
correlation. To take a hypothetical example appglylBquation 20, if the average
intercorrelation of a six-item scale is .5, thea #ipha for the scale would be: To give an
example of how alpha is calculated, consider théetfl self -esteem scale developed by
Rosenberg (1965). The intercorrelations amongtdmas for a sample of adolescents are
presented in Table 3 (for further discussion okéhdata see the appendix). To find the
mean interitem correlation we first sum the 45 elations in Table 3: .185 + .451 + .048
+ ... +.233 = 14.487. Then we divide this sum by #5:487/45 = .32. Now we use this
mean interitem correlation of .32 to calculate alpls follows: From Equation 20 it is not
difficult to see that alpha varies between .00 ar@D, taking on these limits when the



average interitem correlations are zero and umiggpectively. The interpretation of
Cronbach's alpha is closely related to that givenréliability estimates based on the
split- halves method. Specifically, coefficient lagpfor a test having 2N items is equal to
the average value of the alpha coefficients obtafoeall possible combinations of items
into two half-tests (Novick and Lewis, 1967). Ahtatively, alpha can be considered a
unique estimate of the expected correlation of ¢est with an alternative form
containing the same number of items. Nunnally ()9#& demonstrated that coefficient
alpha can also be derived as the expected cooeldtetween an actual test and a
hypothetical alternative form of the same lengthe dhat may never be constructed.
Novick and Lewis (1967) have proven that, in gehealpha is a lower bound to the
reliability of an unweighted scale of N items, tigtr x 3 a. It is equal to the reliability if
the items are parallel. Thus, the reliability afcale can never be lower than alpha even if
the items depart substantially from being paratieasurements. In other words, in most
situations, alpha provides a conservative estirafite measure's reliability. Equation 20
also makes clear that the value of alpha dependseoaverage interitem correlation and
the number of items in the scale. Specifically ttas average correlation among items
increases and as the number of items increasesathe of alpha increases. This can be
seen by examining Table 1 which shows the valuglia given a range in the number
of items from 2 to 10 and a range in the averatgritem correlation from .0 to 1.0. For
example, TABLE 1 Values of Cronbach's Alpha for idas Combinations of Different
Number of Items and Different Average Interitem @tations Number of Items Average
Interitem Correlation .0 .2 .4 .6 .8 1.0 2 .0003.38372 .750 .889 1.000 4 .000 .500 .727
.857 .941 1.000 6 .000 .600 .800 .900 .960 1.0@M8 .666 .842 .924 .970 1.000 10 .000
.714 .870 .938 .976 1.000 a 2-item scale with arae iteritem correlation of .2 has an
alpha of .333. However, a 10-item scale with

same average interitem correlation has an alph@ldf. Similarly, an 8-item scale with
an average interitem correlation of .2 has an aifh&66 whereas if the 8 items had an
average intercorrelation of .8, then the scalgghaalwould be .970. In sum, the addition
of more items to a scale that do not result indacgon

average interitem correlation will increase theatslity of one's measuring instrument.
While increasing the number of items in a scale tbas improve the scale's reliability,
there are significant limitations to this procedufest, the adding of items indefinitely
makes progressively less impact on the reliabilitjius, given an average interitem
correlation of .4, increasing the number of itemmf 2 to 4 increases the alpha for the
scale by .155 (i.e., .727 — .572 = .155). Howeirameasing the number of items from 8
to 10 with the same average interitem correlatioly increases the alpha by .028 (i.e.,
.870 — .842 = .028). Second, the greater the nuofiggms in a scale, the more time and
resources are spent constructing the instrumestduld be noted, finally, that adding
items to a scale can, in some instances, reducétiggthened scale's reliability if the
additional items substantially lower the averagteritem correlation. Alpha is more
difficult to compute than coefficients based onestinethods of assessing reliability. In
the retest, alternative-form, and split-halves rod# it is only necessary to calculate a
single correlation to obtain the desired reliapildstimate. Specifically, in the retest
method, scores for the same group of people ons#ime test administered on two
occasions are correlated; in the alternative-foamgroach, scores on different versions
of the same test are correlated; and in the splitds method, the items are divided into



arbitrary halves and scores between the half-tast<orrelated. In contrast, as we have
seen, alpha depends on the average intercorrelatrmng all of the items. Yet, it is
important to realize that although more complex potationally, alpha has the same
logical status as coefficients arising from theeotmethods of assessing reliability. This
is easy to see once we consider some additiongkepies of parallel measurements. In
addition to having equal true scores and equal eapnances, parallel measurements are
assumed to have the following useful propertie$: The expected (mean) values of
parallel measures are equal: E(X) = E(X). (2) Dhserved score variance of parallel
measures is equal: s 2x = sx'2 . * (3) The intestations among parallel measurements
are equal from pair to pair: r xx' = r xx" = r%'x(4) The correlations of parallel measures
with other variables are equal: r xy = r X'y = gx'"These properties imply that there are
no systematic differences between parallel measmsninstead, they only differ from
another because of strictly random error, and tfossgssential purposes, are completely
interchangeable. Moreover, since parallel measunesrieave equal intercorrelations, the
average interitem correlation is simply equal t® torrelation between any arbitrary pair
of items. In other words, if the items are trulyglkel, the average interitem correlation
accurately estimates all of the correlations initeen matrix. Thus, logically, using the
average correlation in the calculation of alpha am® to exactly the same thing as
calculating a simple correlation between parallebsurements.

KR20

Cronbach's alpha is a generalization of a coefitaltroduced by Kuder and Richardson
(1937) to estimate the reliability of scales conggbsf dichotomously —scored items.
Dichotomous items are scored one or zero deperatinghether the respondent does or
does not possess the particular characteristic rumgestigation. Thus, for the items
making up a spelling test, a score of 1 would beemiwhen the students spelled a
particular word correctly but zero if the word igefled incorrectly. To determine the
reliability of scales composed of dichotomously recbitems, one uses the following
Kuder-Richardson formula number 20 (symbolized KR2Ghere N is the number of
dichotomous items; p i is the proportion respondipgsitively” to the i th item; q i is
equaltol-pi;ands 2x *is equal to the vace of the total composite. Since KR20 is
simply a special case of alpha, it has the sanergrdtation as alpha; that is, it is an
estimate of the expected correlation between osteated a hypothetical alternative form
containing the same number of items. CorrectionAtienuation Whatever particular
method is used to obtain an estimate of reliabibtye of its important uses is to "correct”
correlations for unreliability due to random mea&soent error. That is, if we can
estimate the reliability of each variable, then g&n use these estimates to determine
what the correlation between the two variables @dwe if they were made perfectly
reliable. The appropriate formula is as follows:endr xtyt is the correlation corrected
for attenuation; r xiyj is the observed correlafioxx' is the reliability of X; and r yy' is
the reliability of Y. For example, if the observearrelation between two variables was .2
and the reliability of each variable was .5, thiea torrelation corrected for attentuation
would be: This means that the correlation betwéesé two variables would be .4 if both
were perfectly reliable (measured without randomrgr Table 2 illustrates the behavior
of the correlation coefficient under varying comalits of correction for attenuation. Table
2A shows the value of the correlation correcteddienuation given that the observed



correlation is .3 with varying reliabilities of Xnd Y. As an example, when the
reliabilities of X and Y are .4, respectively, therrected correlation is .75. When the
reliabilities of X and Y are 1.0, respectively, therrected correlation is equal to the
observed correlation of .3. Table 2B presents aimlalculations when the observed
correlation is .5. Examining sections A and B oblEa? it is clear that the higher the
reliabilities of the variables, the less the cotedccorrelation differs from the observed
correlation. Table 2C presents the value of theetation that one will observe when the
correlation between X t and Y t is .5 under varyicmnditions of reliability. If the
reliabilities of X and Y are .8, respectively, tlobserved value of a theoretical .5
correlation is .4. Table 2D presents similar catohs when the correlation between X t
and Y tis .7. For example, even if the theoretmatelation between X t and Y tis .7,
the observed correlation will be only .14 if thdiakilities are quite low (.2). Thus, one
must be careful not to conclude that the theoretioarelations are low simply because
their observed counterparts are low; it may insteathe case that the measures are quite
unreliable. Conclusion This chapter has discussmg imethods for assessing the
reliability of empirical measurements. For reasorentioned in the chapter, neither the
retest method nor the split-halves approach ismeeended for estimating reliability.
The major defect of the retest method is that ezpee in the first testing usually will
influence responses in the second testing. The rn@joblem with the split-halves
approach is that the correlation between the hahi#differ somewhat depending on
how the total number of items is divided into halvAs Nunnally argues, "it is best to
think of the corrected correlation between any hatves of a test as being an estimate of
coefficient alpha. Then it is much more sensiblestoploy coefficient alpha than any
split-half method" (1978: 233). In contrast, théeatative-form method and coefficient
alpha provide excellent techniques for assessitigbiity. The practical limitation of
using the alternative-form method is that it cangbée difficult to construct alternative
forms of a test that are parallel. One recommendeyg of overcoming this limitation is
by randomly dividing a large collection of items half to form two randomly parallel
tests. In sum, if it is possible to have two tedmaistrations, then the correlation
between alternative forms of the same test providesery useful way to assess
reliability. Coefficient alpha should be computeor fany multiple-item scale. It is
particularly easy to use because it requires ordingle test administration. Moreover, it
is a very general reliability coefficient, encompiag both the Spearman-Brown
prophecy formula as well as the Kuder-RichardsonFatally, as we have seen, alpha is
easy to compute, especially if one is working veitborrelation matrix (for further details
on the computation of alpha see Bohrnstedt, 198%).minimal effort that is required to
compute alpha is more than repaid by the substanf@mation that it conveys about
the reliability of a scale. What is a satisfactteyel of reliability? Unfortunately, it is
difficult to specify a single level that should &pn all situations. As a general rule, we
believe that reliabilities should not be below 80 widely used scales. At that level,
correlations are attenuated very little by randosasurement error. At the same time, it
is often too costly in terms of time and money tp o obtain a higher reliability
coefficient. But the most important thing to rememnks to report the reliability of the
scale and how it was calculated. Then other reBeessccan determine for themselves
whether it is adequate for any particular purpose.

TABLE 2 Examples of Correction for Attenuation



Notes

1. Stevens's definition of measurement is consldier@ss stringent than some earlier
definitions, which proposed that the term be restd to the assignment of numbers to
objects or events only when there exist operatiggen the objects or events similar to
the arithmetic operations upon the numbers. Forief but lucid discussion of various
efforts to define measurement, see Jones (1971).

2. It may seem that it is possible (even quitelyikéhat repeated measurements of some
attributes, especially physical attributes, woukhatly duplicate each other. But as
Stanley has aptly stated, "the discrepancies betw®e sets of measurements may be
expressed in miles and, in other cases, in milierdaf a millimeter; but, if the unit of
measurement is fine enough in relation to the amurof the measurements,
discrepancies always will appear” (1971: 356).

3. For a comprehensive listing of various factdrat tcontribute to error variance and
systematic variance in educational testing, seel&tg1971).

4. For discussions of the conflicting evidence @nmg acquiescence, see Bentler et al.
(1972) and Rorer (1967).

5. Nunnally (1978) argues that even modest corogist(e.g., a correlation of .30)
between test and criterion can prove quite use&fuk€lection purposes. He also argues
that the "proper way to interpret a validity coeiint is in terms of the extent to which it
indicates a possible improvement in the averagditgyuaf persons that would be
obtained by employing the instrument in questidr®78: 91).

6. As we will discuss later in this volume, randomasurement error always attenuates
simple correlations. In other words, low validitgetficients can result from substantial
unreliability in either the measuring instrumentloe critierion variable. Therefore, a low
validity coefficient does not necessarily mean tiha measuring instrument and/or the
criterion are invalid; instead, it may indicatetteabstantial random error affects either or
both measurements. It is especially useful to abitadependent evidence concerning the
extent of the reliability of the criterion variablalthough its measurement is often
neglected in practical situations.

7. Sometimes the term "face validity" is used ia slocial sciences. This type of validity
should not be confused with content validity. Faeddity, as (1978: 111) has noted,
"concerns judgements about an instrument aftey ¢donstructed Nunnally,” focusing on
the extent to which it "looks like" it measuresawit is intended to measure. Thus, face
validity is, at best, concerned with only one aspécontent validity.

8. It is important to realize that the size of tbasrelation will depend on the reliability
and validity of both measures. Thus, in assessorgtouct validity, it is important to
obtain independent evidence concerning the religbéind validity of the "second"”
measure. The situation is the same as that involaeeévaluating criterion-related
validity, as discussed above (see Note 6).

9. There are very few published studies in whichstact validation is the central
concern of the analysis. For a useful example sefstétter's (1971) careful analysis of
the construct validity of the "amateur politician."

10. Campbell and Fiske's (1959) concepts of corargrgnd discriminant validity can be
seen as a logical extension of construct validitywihich each of the constructs is
measured by multiple methods. Convergent validgifgns to the extent to which different
methods of measuring the same trait yield simiésults; the fundamental assumptions



being that different methods of measuring the s&aie should converge on the same
result. Discriminant validity, on the other handfers to the extent to which similar or
identical methods measuring different traits leadlifferent results; that is, discriminant
validity implies that traits that are truly distifitom one another should lead to different
results even if they are measured by the same wchefoo

discussion of how convergent and discriminant wglicare analyzed within the
multitrait-multimethod matrix, see Sullivan and ¢@lan (1979).

11. In formal terms, this "average score" is reféno as the expected value (or mean) if
someone were remeasured an infinite number of tondbkat variable.

12. In formal terms, random error can be definecerasr that has a definite (usually
equal) probability of occurring in the long run.

13. Parallel measurements have a number of othemesting properties but these are not
central for the development here. For further dismn, see Lord and Novick (1968). It
is worth noting that many of the results presentede apply not only to parallel
measurements but also to tests or items that aredaivalent, essentially tau-equivalent,
or congeneric. Measurements are tau-equivalerttey thave identical true scores but
possibly different error variances. Measuremenés emsentially tau-equivalent if their
true scores differ by an additive constant. And sneaments are congeneric if their true
scores are linearly dependent on each other. Tiesmost restrictive measurement
model is the parallel model whereas the leastictist is the congeneric model. For
further discussion of these models, see GreeneCamohines (forthcoming), Joéreskog
(1971), Lord and Novick (1968), and Novick and Le{i967).

14. A variety of other terms (e.qg., items, indicajacould be used in place of tests here
with no loss of generality to the discussion.

15. While it is impossible to separate true chaingm unreliability in the retest method,
Heise (1969) has shown that this can be obtain#teie are at least three occasions on
which the variable is measured and if one is wdllito make certain simplifying
assumptions. For further discussion of methodsagsessing the reliability and stability
of measurements over time, see Achen (1975), Whegzttal. (1977), Wiley and Wiley
(1970), Wiley and Wiley (1974), and Erikson (1978).

16. Our discussion of the role of factor analysigdliability and validity assessment only
provides an introduction to this rather complexi¢cop-or more thorough discussions see
Carmines and Zeller (1974), Zeller and Carmines/§l%orthcoming), Greene and
Carmines (forthcoming), Allen (1974), Armor (1974jeise and Bohrnstedt (1970),
Smith (1974a, 1974b), Jéreskog (1971), and Be(i89).

17. For a thorough discussion of the methods dbfaanalysis, see Harman (1976). Kim
and Mueller's (1978a, 1978b) volumes on factor yamglin this series provide a very
useful introduction to the topic.
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Appendix:

The Place of Factor Analysis in Reliability and Ml Assessment

Since factor analysis is often used to construalescin the social sciences, this appendix
will discuss how this statistical technique carubed to assess the reliability of multiple-
item measures. We will also briefly discuss andsiilate the uses and limitations of
factor analysis in assessing the validity of enggirimeasurement. 16 Factor Analysis
and Reliability Estimation In discussing the vagauethods for assessing reliability, we
noted that one of the assumptions underlying thesthods is that the items in the scale
are parallel, which implies that the items measarsingle phenomenon equally. As
Armor (1974) observes, this suggests that therévaveconditions under which real data
can violate these assumptions: if the items measiagle phenomenon unequally or if
the items measure more than one concept equallynegually. Factor analysis is
explicitly designed to cope with both of these &itons. Essentially factor analysis
consists of a variety of statistical methods foscdvering clusters of interrelated
variables. 17 It is typically the case that morantlone of these clusters, or factors,
underlies a set of items. Each factor is definedthmyse items that are more highly
correlated with each other than with the other #e# statistical indication of the extent
to which each item is correlated with each facsogiven by the factor loading. In other
words, the higher the factor loading, the morephsicular item contributes to the given
factor. Thus, factor analysis also explicitly taket® consideration the fact that the items
measure a factor unequally. In sum, reliability fiornts based on factor analysis are
not as restrictive as those methods for estimatatigbility that assume parallel items.
We shall now discuss two of the more popular o$¢heoefficients.

Theta

Coefficient theta can be easily understood oncecaresider in greater detail principal
components, the factor analysis model on which thlgbility coefficient is based.
Given a set of items in which there are no perftércorrelations, a principal-
component analysis will yield as many componentthage are items. The components
are extracted in decreasing order of importanceéerms of the amount of variance
associated with each component. That is, the ¢oshponent accounts for the largest
proportion of variance among the items, the seamomdponent for the second largest
proportion that is independent of the first compadnand so on. Corresponding to each
of these components is a series of loadings. TAeeddithese loadings gives an indication
of the contribution that the item makes to each moment. Since the components are
extracted in decreasing order of importance, iofes that the sum of (and average of)
the squared loadings (i.e., the eigenvalue) wilhigher for the first components than for
the last extracted components. Thus, there is ativegrelationship between the
eigenvalue of a component and when that componest extracted. For example, the
third extracted component always has an eigenvéha¢ is less than the second
component and greater than the fourth componenerGihese properties of principal
components, what should one expect if a set ofdtisnmeasuring a single phenomenon?
Several aspects of the extracted (i.e., unrotatadjor matrix could support this
hypothesis: (1) the first extracted component stha@xplain a large proportion of the
variance in the items (say > 40%); (2) subsequemponents should explain fairly equal
proportions of the remaining variance except fgradual decrease; (3) all or most of the
items should have substantial loadings on the @oshponent (say > .3); and (4) all or



most of the items should have higher loadings erfitist component than on subsequent
components. Now consider the alternative situationwhich the researcher has
hypothesized that a set of items measures moresatisargle phenomenon. In this case, a
principal -component analysis of the items shoukktrthe following conditions: (1) the
number of statistically meaningful components stiadual the number of hypothesized
phenomena; (2) after rotation, specific items stichdve higher factor loadings on the
hypothesized relevant component than on other caemgs; and (3) components
extracted subsequent to the number of hypothesiaethbonents should be statistically
unimportant and substantively uninterpretable. Wheset of items is measuring more
than a single underlying phenomenon, it is oftecgessary to rotate the extracted
components in order for them to be optimally intetable. At this point, the researcher
has two options in constructing scales. First,escalan be computed directly from the
rotated factor structure. Alternatively, subsetsiteins defining each of the rotated
components can be refactored according to theipghecomponent procedure. However
the items and their corresponding weights are chdbe reliability of the resulting scale
can be estimated using the following formula faetéh where q represents theta; N equals
the number of items; and | 1 is the largest (tlee, first) eigenvalue. Theta lends itself to
many different interpretations but it is understondst simply as being a special case of
Cronbach's alpha. Specifically, theta is the alpbafficient for a scale in which the
weighting vector has been chosen so as to maka alphaximum. In other words, theta
may be considered a maximized alpha coefficiene¢@e and Carmines, forthcoming).
Omega Another estimate of reliability for lineaakss that has gained some popularity is
omega, a reliability coefficient introduced by Heiand Bohrnstedt (1970). Omega is
based on the common factor analysis model. Inntimdel, unities have been replaced by
community estimates in the main diagonal of theetation matrix prior to factoring.
Omega takes the general form:

where W is omega; s 2i * is equal to the variantéhe ith item; h 2i* is equal to the
communality of the ith item; and SSs xix]j is thensaf the covariances among the items.
If one is working with correlations, then the fodamdor omega reduces to: where a is
equal to the number of items and b is the sumeftcthrelations among the items. There
are three important diffences between omega an f{Aemor, 1974). First, they are
based on different factor-analytic models. Thetgra@inded in the principal -components
model whereas omega is based on the common fatcatysés model. This means that
one always uses 1.0's in the main diagonal to cteniie eigenvalues on which theta is
based but the value of omega depends, in partoommtinalities, which are estimated
guantities not fixed ones. This is another wayafisg that because omega is based on
estimated communalities, there is an element adterdhinancy in its calculation that is
not present in theta. Finally, unlike theta, "ometmes not assess the reliability of
separate scales in the event of multiple dimenSi¢dsmor, 1974: 47). Rather, omega
provides a coefficient that estimates the religpitif all the common factors in a given
item set. We should note, finally, the relationsaipong theta, omega, and alpha. If the
items making up the scale are parallel measuremgr@s all three coefficients will be
equal to one another and will equal the reliabitifythe scale. Otherwise, the following
order will hold: alpha < theta < omega. Thus, waiagee that alpha is a lower bound for
the reliability of multitem scales. And of thederde internal consistency coefficients,
omega provides the highest estimate of reliabilitiat-is, the closest estimate to the true



reliability of the measure. (For further discussiohthese reliability coefficients, see
Greene and Carmines, forthcoming.) Factor Analysis Construct Validity Factor
analysis can also be useful for assessing theityald empirical measures (Nunally,
1978). However, if the results of a factor analyasie interpreted without theoretical
guidance, it can lead to misleading conclusionsceoring the validity of measuring
instruments. In order to illustrate the uses angeeslly the limitations of assessing
construct validity through factor analysis, we wiibcus on Rosenberg's (1965)
conceptualization and measurement of self -est®asenberg defines self -esteem as the
overall attitude that a person maintains with rdgiar his own worth and importance.
Rosenberg conceptualizes self -esteem as a unpergonal predisposition, and he
constructed 10 items designed to measure this Tiaé data for this analysis come from
a study of the relationship between personalititgstrand political attitudes among high
school students (Carmines, 1978). Factor-Analytiterpretations of Self-Esteem A
correlation matrix of the 10 items used to measeftesteem is presented in Table 3. On
the whole, the items intercorrelate positively, sistently, and significantly. But do the
items form a single dimension of self - esteem? olmmon factor (principal axes)
analysis (using SMC's in the main diagonal) of iteens is shown in Table 4. Within a
strict factor-analytic framework, Rosenberg's cqbgalization implies that we should
observe a unifactorial structure. However, the ltesaf the factor analysis do not clearly
support this presumption. Rather, the factor sotutindicates that there are two
substantial empirical factors that underlie theas@dFurther, when these two factors are
rotated to a varimax solution, as shown in Tabléhdy show a fairly distinct clustering
of items. Factor | is defined principally by iterhs3, 5, 8, and 10 while items 2, 4, 6, 7,
and 9 most clearly define factor Il. We may referfdctor | as the positive self-esteem
factor, since those items that load most stronglyitoare reflective of a positive,
favorable attitude toward the self. For examples ohthese items states, "I feel that I'm a
person of worth, at least on an equal place witterst” By contrast, those items that
most clearly define factor Il have in common a riega unfavorable reference to the
self. For example, the item that loads highestamtor 1l states, "At times | think | am no
good at all." We may refer to factor Il, therefoas,the negative self-esteem factor. These
empirical factors of self -esteem are not polaragies. Rather, the results of the factor
analysis indicate that the dimensions are defiitistinguishable from one another,
forming as they do separate identifiable factorerddver, when we factor analyze the
two sets of items separately, one and only onetantisl factor emerges for each
dimension of self-esteem (see Table 5). Further,itdéms forming these factors show
fairly strong loadings on their respective factdrkat is, the negative self-esteem items
have loadings ranging from .351 to .757 on theingdypal factor, as shown in Table 5.
This analysis offers strong support for the bidisienality of self-esteem.
TABLE 3 Correlation Matrix of Self-Esteem Itemstarhs 123456789
1 - .185 .451 .399 .413 .263 .394 .352 .361 .204-2048* .209 .248 .246 .230 .050*
277 .2703 —.350.399 .209 .381 .427 .278 83 - .369 .415 .469 .280 .358 .221 5
—.338 .446 .457 .317 4256 4.214 502 .189 7 —.315.577 .311 8
—.299.3749 —.238
a. N = 340. *p > .05. For all other correlationsTiable p < .001.
1. | feel that | have a number of good qualities. b
2. 1 wish | could have more respect for myself. ¢



. | feel that I'm a person of worth, at least aregual plane with others.

. | feel I do not have much to be proud of.

. | take a positive attitude toward myself.

. | certainly feel useless at times.

. All'in all, I'm inclined to feel that | am a fare.

. I am able to do things as well as most othepleeo

. At times I think | am no good at all.

10. On the whole, | am satisfied with myself. b.

Response categories for items are: (1) Never {)eSeldom true, (3) Sometimes true,
(4) Often true, (5) Almost always true.

c. ltems 2, 4, 6, 7, and 9 have been reflected thathhigher scores indicate higher self-
esteem.
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TABLE 4

Factor Loadings of the Self-Esteem Items Items taEted Rotated | [l h 1 11 h 1 .590
.109 .360 .495 b .339 .360 2 .328 —.176 .138 .B68 .138 3 .581 .314 .436 .633 .187
436 4 .600 —.085 .367 .365 .483 .367 5 .669 .488 .614 .332 .487 6 .577 —.346 .453
.165 .653 .453 7 .731 —.202 .575 .376 .659 .578 .387 .451 .662 .113 .451 9 .640 —
.359 .539 .200 .706 .539 10 .480 .196 .269 .478 .269 Eigenvalue 3.410 .666 2.043
2.032 Percent of Variance .341 .067 .408 .204 .203

a. For an exposition of items, see Table 3.

b. The underlined factor loading indicates whiclihef factors each item loads higher on.

An Alternative Interpretation of the Two-Factor Gwbn The factor analyses of
Rosenberg's self -esteem scale have indicatedhbatems do not necessarily form a
single empirical dimension of self -esteem but eattihat they may reflect two distinct
components of the self - image. Because of thesitinat tended to define each factor, we
labeled one of these components the positive sedeen factor while we referred to the
other component as the negative self -esteem fagier now want to consider an
alternative interpretation of the two-factor sabuti Specifically, we want to consider the
possibility that the dual dimensionality of seltemm is a function of nonrandom
measurement error: namely, response set among/thsets of scale items. Response set
may be defined as the general tendency to resmoimdetrview or questionnaire items in
a particular manner, irre spective of their cont@iearly, this is a very real possibility in
the present case, for the items forming each otliimensions of self -esteem are worded
in a similar manner. That is, the items which Idagher on the positive self-esteem
factor are all worded in a positive direction whilese loading higher on the negative
self- esteem factor are all worded in a negativeation. Given this situation, it is not
unusual to find somewhat higher correlations amtargs which are worded in the same
direction than among items which differ in the dtren of their wording. This, of course,
is precisely what we observed in the intercorrefegi among the self-esteem items.
Notice also that the positive and negative signghef factor loadings on the second
principal factor in the unrotated structure arerespntative of the positive and negative
wording of the items.



TABLE 5 Factor Loadings of Positive and Negativelf-&steem Items Factored
Separately Positive Self-Esteem Items Item Factading h 2 1 .568 .323 3 .651
424 5 .699 .489 8 .658 .433 10 .524 .275 Negdbgk-Esteem Items Item Factor
Loading h 2 2 .351 .123 4 .577 .333 6 .674 .45457 .573 9 .727 .528

In addition, since factor analysis does nothing entvan redefine and simplify the
correlation matrix, we would also expect that rem@o set among items would
contaminate the factor structure of those itemswé-factor empirical solution, in other
words, does not invariably indicate that the twctdes measure two separate theoretical
concepts. It may also be an indication that thestare an empirical representation of a
single concept, self - esteem, with the secondfadtie to a method artifact such as
response set. Let us assume, for the moment, Hbaproper interpretation is a single
theoretical concept with response set producingsdo®nd factor. In this case, the first
factor obtained from the principal -factor solutimpresents theoretically valid variance
while the second factor represents systematic esadaence. The point is that a factor
analysis itself cannot differentiate between th@seinterpretations, since it only reflects
the differential pattern of correlations among #Heale items. In summary, the factor
analysis of the scale items does not provide ungualis, and even less unimpeachable,
evidence of the theoretical dimensionality undedyithese self-esteem items. On the
contrary, since the bifactorial structure can Wherection of a single theoretical dimension
which is contaminated by a method artifact as waelbeing indicative of two separate,
substantive dimensions, the factor analysis lettwvesheoretical structure of self-esteem
indeterminate. Resolving the Alternative Interptietaof the Two-Factor Solution Factor
analysis does not resolve the issue of the conak{steoretical structure of Rosenberg's
self-esteem scale. Following the logic of constnadidation, the appropriate procedure
is to compare the correlations of each empiricalatision of self-esteem with a set of
theoretically relevant external variables. If thespive and negative self-esteem factors
measure different components of the self-imagey gteould relate differentially to at
least some of these external variables. If, onother hand, the factors measure a single
dimension of self -esteem with the bifactorial stune being due to a method artifact, the
two factors should relate similarly to these thdoadly relevant variables. By following
this procedure, we will be able to evaluate thetégcal structure of self-esteem.

Table 6 presents the correlations between eachndiote of self-esteem and 16 external
variables. These variables cover three broad sulidgta areas: socioeconomic

background factors, other psychological predisposst and social and political attitudes.
Almost all of the correlations are statisticallgmificant (at the .05 level) and a majority
of them seem to be substantively important as widle positive and negative self-

esteem scales, in other words, seem to capturéiemtsdimension of the adolescent's
self-image. But these factors seem to tap the seattegr than different, dimensions, for
their correlation with these theoretically relevarternal variables are almost identical to
one another in terms of direction, strength, andsstency. Indeed, the average
difference between correlations across all 16 béemis approximately .03, with the

highest difference being .05. None of these diffees is statistically significant (at even
the .25 level), and it would be extremely diffictdt attach theoretical importance to the
differences as well. In summary, while the factoalgsis left the theoretical structure of



the self-esteem items indeterminate, the evidero®iged by an analysis of their
construct validity leads to a more definitive cargtbn: namely, that the items measure a
single theoretical dimension of self-esteem. The-tactor solution, therefore, offers
only spurious evidence for the dual theoretical ehsionality of self-esteem. The more
appropriate interpretation is that the bifactosalcture of the items is a function of a
single theoretical dimension of self -esteem tlsatontaminated by a method artifact,
response set. Conclusion This appendix has disgubgerelation of factor analysis to
reliability and validity assessment. As we havensdbere is a very close connection
between factor analysis and reliability assessmienparticular, reliability coefficients
derived from factor analysis models make less gérh assumptions about items than
alpha-based reliability which presumes that thengte@are parallel measures. The use of
factor analysis in assessing validity is much nufra two-edged sword. While it can be
useful for this purpose, factor analysis does mwaygs lead to unambiguous inferences
concerning the underlying theoretical dimensiogadit a set of items. Instead, naive and
simplistic interpretation of factor structures danmisleading in terms of determining the
substantive nature of empirical measures. We hese Bow response set can artificially
produce an inference of two underlying dimensiomenvin fact there is only one. Any
method artifact that can systematically alter tberedations among items may produce
this kind of faulty inference. In summary, whilecfar analysis is quite useful for
assessing the reliability and validity of empiricaasures, it is properly seen as a tool of
theoretical analysis, not as a replacement fodsed in this more modest role, factor
analysis can aid in the development and assessrhentpirical measurements.
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