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Definition of Measurement 
The notion that measurement is crucial to science seems a commonplace and 
unexceptional observation. Most book-length treatments of the philosophy of science 
include a discussion of the topic. And books focusing on research methods invariably 
have a chapter dealing with the problems associated with measurement. Yet, the 
widespread acknowledgement of the importance of good measurement has not—until 
quite recently —led to the development of systematic and general approaches to 
measurement in the social sciences. Quite the contrary, historically, measurement has 
been more of an abstract, almost ritualistic concern instead of being an integral and 
central aspect of the social sciences. The coexistence of this asymmetric condition of 
ritualistic concern but lack of systematic attention with regard to measurement may be 
partially attributable to the way in which this term is most commonly defined. The most 
popular definition of measurement is that provided by Stevens more than 25 years ago. 
"Measurement," Stevens wrote, "is the assignment of numbers to objects or events 
according to rules" (1951: 22). The problem with this definition, from the point of view 
of the social scientist, is that, strictly speaking, many of the phenomena to be masured are 
neither objects nor events. Rather, the phenomena to be measured are typically too 
abstract to be adequately characterized as either objects or events.  
Thus, for example, phenomena such as political efficacy, alienation, gross national 
product, and cognitive dissonance are too abstract to be considered ''things that can be 
seen or touched" (the definition of an object) or merely as a "result, consequence, or 
outcome" (the definition of an event). In other words, Stevens's classical definition of 
measurement is much more appropriate for the physical than the social sciences. Indeed, 
it may have inadvertently impeded efforts to focus systematically on measurement in 
social research. 1 A definition of measurement that is more relevant to the social sciences 
is that suggested by Blalock's observation that: Sociological theorists often use concepts 
that are formulated at rather high levels of abstraction. These are quite different from the 
variables that are the stock-in-trade of empirical sociologists. … The problem of bridging 
the gap between theory and research is then seen as one of measurement error [1968: 6; 
12]. In other words, measurement is most usefully viewed as the "process of linking 
abstract concepts to empirical indicants" (Zeller and Carmines, forthcoming), as a process 
involving an "explicit, organized plan for classifying (and often quantifying) the 
particular sense data at hand—the indicants—in terms of the general concept in the 
researcher's mind" (Riley, 1963: 23). This definition makes it clear that measurement is a 
process involving both theoretical as well as empirical considerations. From an empirical 
standpoint, the focus is on the observable response— whether it takes the form of a mark 



on a self-administered questionnaire, the behavior recorded in an observational study, or 
the answer given to an interviewer. Theoretically, interest lies in the underlying 
unobservable (and directly unmeasurable) concept that is represented by the response. 
Thus, using the above examples, the "mark" may represent one's level of self-esteem, the 
"behavior" may indicate one's level of personal integration during a conflict situation, and 
the "answer" may signify one's attitude toward President Carter. Measurement focuses on 
the crucial relationship between the empirically grounded indicator(s)—that is, the 
observable response—and the underlying unobservable concept(s). When this 
relationship is a strong one, analysis of empirical indicators can lead to useful inferences 
about the relationships among the underlying concepts. In this manner, social scientists 
can evaluate the empirical applicability of theoretical propositions. On the other hand, if 
the theoretical concepts have no empirical referents, then the empirical tenability of the 
theory must remain unknown. But what of those situations in which the relationship 
between concept and indicators is weak or faulty? In such instances, analysis of the 
indicators can lead possibly to incorrect inferences and misleading conclusions 
concerning the underlying concepts. Most assuredly, research based on such inadequate 
measurement models does not result in a greater understanding of the particular social 
science phenomenon under investigation. Viewed from this perspective, the auxiliary 
theory specifying the relationship between concepts and indicators is equally important to 
social research as the substantive theory linking concepts to one another. Reliability and 
Validity Defined Given the above definition of measurement, the question naturally 
arises as to how social scientists can determine the extent to which a particular empirical 
indicator (or a set of empirical indicators) represents a given theoretical concept. How, 
for example, can one evaluate the degree to which the four items used to measure 
political efficacy in The American Voter (Campbell et al., 1960) accurately represent that 
concept? Stated somewhat differently, what are the desirable qualities of any measuring 
procedure or instrument? At the most general level, there are two basic properties of 
empirical measurements. First, one can examine the reliability of an indicator. 
Fundamentally, reliability concerns the extent to which an experiment, test, or any 
measuring procedure yields the same results on repeated trials. The measurement of any 
phenomenon always contains a certain amount of chance error. The goal of error-free 
measurement—while laudable—is never attained in any area of scientific investigation. 2 
Instead, as Stanley has observed, "The amount of chance error may be large or small, but 
it is universally present to some extent. Two sets of measurements of the same features of 
the same individuals will never exactly duplicate each other" (1971: 356). Some 
particular sources of chance error will be discussed later in this chapter. For the moment 
it is simply necessary to realize that because repeated measurements never exactly equal 
one another, unreliability is always present to at least a limited extent. But while repeated 
measurements of the same phenomenon never precisely duplicate each other, they do 
tend to be consistent from measurement to measurement. The person with the highest 
blood pressure on a first reading, for example, will tend to be among those with the 
highest reading on a second examination given the next day. And the same will be true 
among the entire group of patients whose blood pressure is being recorded: Their 
readings will not be exactly the same from one measurement to another but they will tend 
to consistent. This tendency toward consistency found in repeated measurements of the 
same phenomenon is referred to as reliability. The more consistent the results given by 



repeated measurements, the higher the reliability of the measuring procedure; conversely 
the less consistent the results, the lower the reliability. But an indicator must be more 
than reliable if it is to provide an accurate representation of some abstract concept. It 
must also be valid. In a very general sense, any measuring device is valid if it does what 
it is intended to do. An indicator of some abstract concept is valid to the extent that it 
measures what it purports to measure. For example, the California F Scale (Adorno et al., 
1950) is considered a valid measure of adherence to authoritarian beliefs to the degree 
that it does measure this theoretical concept rather than reflecting some other 
phenomenon. Thus, while reliability focuses on a particular property of empirical 
indicators—the extent to which they provide consistent results across repeated 
measurements—validity concerns the crucial relationship between concept and indicator. 
This is another way of saying that there are almost always theoretical claims being made 
when one assesses the validity of social science measures. Indeed, strictly speaking, one 
does not assess the validity of an indicator but rather the use to which it is being put. For 
example, an intelligence test may be valid for assessing the native intellectual potential of 
students, but it would not necessarily be valid for other purposes, such as forecasting their 
level of income during adulthood (Nunnally, 1978). 
Just as reliability is a matter of degree, also is validity. Thus, the objective of attaining a 
perfectly valid indicator—one that represents the intended, and only the intended, 
concept—is unachievable. Instead, validity is a matter of degree, not an all -or-none 
property. Moreover, just because an indicator is quite reliable, this does not mean that it 
is also relatively valid. For example, let us assume that a particular yardstick does not 
equal 36 inches; instead, the yardstick is 40 inches long. Thus, every time this yardstick is 
used to determine the height of a person (or object), it systematically underestimates 
height by 4 inches for every 36 inches. A person who is six feet tall according to this 
yardstick, for example, is actually six feet eight inches in height. This particular 
yardstick, in short, provides an invalid indication of height. Note, however, that this error 
of 4 inches per yard will not affect the reliability of the yardstick since it does not lead to 
inconsistent results on repeated measurements. On the contrary, the results will be quite 
consistent although they will obviously be incorrect. In short, this particular yardstick 
will provide a quite reliable but totally invalid indication of height. Random and 
Nonrandom Measurement Error There are two basic kinds of errors that affect empirical 
measurements: random error and nonrandom error. Random error is the term used to 
designate all of those chance factors that confound the measurement of any phenomenon. 
The amount of random error is inversely related to the degree of reliability of the 
measuring instrument. To take a practical example, if a scale gives grossly inaccurate 
indications of the weight of objects—sometimes greatly overweighing them and other 
times underweighing them—then the particular scale is quite unreliable. Similarly, if the 
shots fired from a well-anchored rifle are scattered widely about the target, then the rifle 
is unreliable. But if the shots are concentrated around the target, then the rifle is reliable. 
Thus, a highly reliable indicator of a theoretical concept is one that leads to consistent 
results on repeated measurements because it does not fluctuate greatly due to random 
error. While a formal discussion of random error and its affect on reliability estimation 
will be presented later in this volume, it is important for present purposes to make two 
observations about random error. First, indicators always contain random error to a 
greater or lesser degree. That is, the very process of measurement introduces random 



error to at least a limited extent. The distinction among indicators, therefore, is not 
whether they contain random error, but rather the extent to which they contain random 
error. The second point that needs to be emphasized is that, as suggested above, the 
effects of random error are totally unsystematic in character. Referring to the earlier 
example of the rifle, random error would be indicated if the shots were as likely to hit 
above the target as below it or as likely to hit to the right of the target as to its left. 
Similarly, a scale that is affected by random error will sometimes overweigh a particular 
object and on other occasions underweigh it. The specific sources of random 
measurement error that arise in the social sciences are too numerous to fully enumerate. 3 
In survey research, the kinds of errors that may be assumed to be random include errors 
due to coding, ambiguous instructions, differential emphasis on different words during an 
interview, interviewer fatigue, and the like. But random error is not limited to survey 
research. It also arises in data collected from participant observations, content analysis, as 
well as simulations and experiments. Random measurement error is endemic to social 
research, as it is to all areas of scientific investigation including the physical and 
biological sciences. The second type of error that affects empirical measurements is 
nonrandom error. Unlike random error, nonrandom error has a systematic biasing effect 
on measuring instruments. Thus, a scale that always registers the weight of an object two 
pounds below its actual weight is affected by nonrandom measurement error. Similarly, if 
a thermometer always registers 10 degrees higher than it should, then it is evidencing 
nonrandom measurement error. A third example of nonrandom measurement error can be 
given by slightly altering our earlier illustration focusing on the shots fired from a well-
anchored rifle. If those shots aimed at the bull's eye hit approximately the same location 
but not the bull's eye, then some form of nonrandom error has affected the targeting of 
the rifle. Nonrandom error lies at the very heart of validity. As Althauser and Heberlein 
observe, "matters of validity arise when other factors—more than one underlying 
construct or methods factors or other unmeasured variables—are seen to affect the 
measures in addition to one underlying concept and random error" (1970: 152; see also 
Werts and Linn, 1970). That is, invalidity arises because of the presence of nonrandom 
error, for such error prevents indicators from representing what they are intended to: the 
theoretical concept. Instead, the indicators represent something other than the intended 
theoretical concept—perhaps a different concept entirely. Thus, if a researcher uses a 
particular scale to represent ideological preference but later discovers that the scale 
actually taps party identification, then the scale is obviously an invalid indicator of 
ideology. Just as reliability is inversely related to the amount of random error, so validity 
depends on the extent of nonrandom error present in the measurement process. For 
example, high scorers on the California F Scale (Adorno et al., 1950) have been shown to 
be persons who not only adhere to authoritarian beliefs but also "yeasayers" who agree 
with just about any assertion. In other words, the California F Scale seems to measure 
two different phenomena: adherence to authoritarian beliefs and the personality trait of 
acquiescence. 4 The California F Scale, in short, is not a totally valid measure of 
adherence to authoritarian beliefs. However, it would be a far less valid measure of this 
concept if later research concluded that the scale only measured acquiescence. This is 
another way of saying that validity, like reliability, is a matter of degree, and that it 
critically depends on the extent of nonrandom error in the measurement procedure (just 
as reliability depends on the amount of random error). Conclusion Reliability and 



especially validity are words that have a definite positive connotation. For anything to be 
characterized as reliable and valid is to be described in positive terms. So it is with any 
type of test, experiment, or measuring procedure. If it is reliable and valid, then it has 
gone a long way toward gaining scientific acceptance. Reliability concerns the degree to 
which results are consistent across repeated measurements. An intelligence test is quite 
reliable, for example, if an individual obtains approximately the same score on repeated 
examinations. Any measuring instrument is relatively reliable if it is minimally affected 
by chance disturbances (i.e., random measurement error). But empirical measures that are 
reliable have only come half way toward achieving scientific acceptance. They must also 
be valid for the purpose for which they are being used. Reliability is basically an 
empirical issue, focusing on the performance of empirical measures. Validity, in contrast, 
is usually more of a theoretically oriented issue because it inevitably raises the question, 
"valid for what purpose?" Thus, a driver's test may be quite valid as an indicator of how 
well someone can drive an automobile but it is probably quite invalid for many other 
purposes, such as one's potential for doing well in college. Validity, then, is evidenced by 
the degree that a particular indicator measures what it is supposed to measure rather than 
reflecting some other phenomenon (i.e., nonrandom measurement error). In the beginning 
of this chapter we noted that, following Stevens, measurement is usually defined as the 
assignment of numbers to objects or events according to rules. But as we have seen, for 
any measuring procedure to be scientifically useful, it must lead to results that are 
relatively reliable and valid. In other words, viewed from a scientific perspective, it is 
crucial that the process of assigning numbers to objects or event leads to results that are 
generally consistent and fulfills its explicit purpose. The same point holds for Blalock's 
more social science oriented definition of measurement. Thus, for an indicator to be 
useful in social science research, it must lead to quite consistent results on repeated 
measurements and reflect its intended theoretical concept. This chapter has outlined some 
basic considerations in measurement, especially in regard to the social sciences. The 
remaining chapters in this monograph will expand upon this discussion. Chapter 2 will 
consider the various types of validity thar are relevant in the social sciences. Chapter 3 
will outline the logical, empirical, and statistical foundations of the theory of (random) 
measurement error, and Chapter 4 will discuss a variety of procedures for assessing the 
reliability of empirical measurements. Finally, the appendix will discuss and illustrate the 
role of factor analysis in assessing the reliability and validity of multiitem measures. 
2. Validity  
In Chapter 1 we defined validity as the extent to which any measuring instrument 
measures what it is intended to measure. However, as we pointed out in Chapter 1, 
strictly speaking, "One validates, not a test, but an interpretation of data arising from a 
specified procedure" (Cronbach, 1971: 447). The distinction is central to validation 
because it is quite possible for a measuring instrument to be relatively valid for 
measuring one kind of phenomenon but entirely invalid for assessing other phenomena. 
Thus, one validates not the measuring instrument itself but the measuring instrument in 
relation to the purpose for which it is being used. While the definition of validity seems 
simple and straightforward, there are several different types of validity that are relevant in 
the social sciences. Each of these types of validity takes a somewhat different approach in 
assessing the extent to which a measure measures what it purports to. The primary 
purpose of this chapter is to discuss the three most basic types of validity, pointing out 



their different meanings, uses, and limitations. Criterion-Related Validity Criterion-
related validity (sometimes referred to as predictive validity) has the closest relationship 
to what is meant by the everyday usage of the term. That is, this type of validity has an 
intuitive meaning not shared by other types of validity. Nunnally has given a useful 
definition of criterion-related validity. Criterion-related validity, he notes, "is at issue 
when the purpose is to use an instrument to estimate some important form of behavior 
that is external to the measuring instrument itself, the latter being referred to as the 
criterion" (1978: 87). For example, one "validates" a written driver's test by showing that 
it accurately predicts how well some group of persons can operate an automobile. 
Similarly, one assesses the validity of college board exams by showing that they 
accurately predict how well high school seniors will do in college instruction. The 
operational indicator of the degree of correspondence between the test and the criterion is 
usually estimated by the size of their correlation. Thus, in practice, for some well-defined 
group of subjects, one correlates performance on the test with performance on the 
criterion variable (this correlation, for obvious reasons, is sometimes referred to as a 
validity coefficient). Obviously the test will not be useful unless it correlates significantly 
with the criterion; and similarly, the higher the correlation, the more valid is this test for 
this particular criterion. 5 We have said that the degree of criterion-related validity 
depends on the extent of the correspondence between the test and the criterion. It is 
important to realize that this is the only kind of evidence that is relevant to criterion-
related validity. Thus, to take a rather unlikely example, "if it were found that accuracy in 
horseshoe pitching correlated highly with success in college, horseshoe pitching would be 
a valid measure for predicting success in college" (Nunnally, 1978: 88). The obtained 
correlation tells the entire story as regards criterion- related validity. Thus, criterion-
related validity lends itself to being used in an atheoretical, empircally dominated 
manner. Nevertheless, theory usually enters the process indirectly because there must be 
some basis on which to select the criterion variables. Notice, further, that there is no 
single criterion-related validity coefficient. Instead, there are as many coefficients as 
there are criteria for a particular measure. Technically, one can differentiate between two 
types of criterion-related validity. If the criterion exists in the present, then concurrent 
validity is assessed by correlating a measure and the criterion at the same point in time. 
For example, a verbal report of voting behavior could be correlated with participation in 
an election, as revealed by official voting records. Predictive validity, on the other hand, 
concerns a future criterion which is correlated with the relevant measure. Tests used for 
selection purposes in different occupations are, by nature, concerned with predictive 
validity. Thus, a test used to screen applicants for police work could be validated by 
correlating their test scores with future performance in fulfilling the duties and 
responsibilities associated with police work. Notice that the logic and procedures are the 
same for both concurrent and predictive validity; the only difference between them 
concerns the current or future existence of the criterion variable. It is important to 
recognize that the scientific and practical utility of criterion validation depends as much 
on the measurement of the criterion as it does on the quality of the measuring instrument 
itself. This is sometimes overlooked in setting up and assessing validation procedures. 
Thus, in many different types of training programs, much effort and expense goes into the 
development of a test for predicting who will benefit from the program in terms of 
subsequent job performance. Take, for example, a managerial training program in which 



a screening test is used to select those few individuals who will be given supervisory 
responsibilities upon completion of the program. How is their subsequent performance—
the criterion—measured? Often very little attention is given to the measurement of the 
criterion. Moreover, it is usually the case that subsequent performance is difficult to 
measure under the best of circumstances because, as Cronbach observes, "success on the 
job depends on nonverbal qualities that are hard to assess" (1971: 487). In short, those 
employing criterion validation procedures should provide independent evidence of the 
extent to which the measurement of the criterion is valid. 6 Indeed, Cronbach has 
suggested that "all validation reports carry the warning clause, 'Insofar as the criterion is 
truly representative of the outcome we wish to maximize'" (1971: 488). As we have seen, 
the logic underlying criterion validity is quite simple and straightforward. It has been 
used mainly in psychology and education for analyzing the validity of certain types of 
tests and selection procedures. It should be used in any situation or area of scientific 
inquiry in which it makes sense to correlate scores obtained on a given test with 
performance on a particular criterion or set of relevant criteria. At the same time, it is 
important to recognize that criterion validation procedures cannot be applied to all 
measurement situations in the social sciences. The most important limitation is that, for 
many if not most measures in the social sciences, there simply do not exist any relevant 
criterion variables. For example, what would be an appropriate criterion for a measure of 
a personality trait such as self-esteem? We know of no specific type of behavior that 
people with high or low self -esteem exhibit such that it could be used to validate a 
measure of this personality trait. Generalizing from this situation, it is not difficult to see 
that criterion validation procedures have rather limited usefulness in the social sciences 
for the simple reason that, in many situations, there are no criteria against which the 
measure can be reasonably evaluated. Moreover, it is clear that the more abstract the 
concept, the less likely one is to discover an appropriate criterion for assessing a measure 
of it. In sum, however desirable it may be to evaluate the criterion-related validity of 
social science measures, it is simply inapplicable to many of the abstract concepts used in 
the social sciences. Content Validity A second basic type of validity is content validity. 
This type of validity has played a major role in the development and assessment of 
various types of tests used in psychology and especially education but has not been 
employed widely by political scientists or sociologists. Fundamentally, content validity 
depends on the extent to which an empirical measurement reflects a specific domain of 
content. For example, a test in arithmetical operations would not be content valid if the 
test problems focused only on addition, thus neglecting subtraction, multiplication, and 
division. By the same token, a content-valid measure of Seeman's (1959) concept of 
alienation should include attitudinal items representing powerlessness, normlessness, 
meaninglessness, social isolation, and self estrangement. The above examples indicate 
that obtaining a content- valid measure of any phenomenon involves a number of 
interrelated steps. First, the researcher must be able to specify the full domain of content 
that is relevant to the particular measurement situation. In constructing a spelling test for 
fourth graders, for example, one must specify all of the words that a fourth grader should 
know how to spell. Second, one must sample specific words from this collection since it 
would be impractical to include all of these words in a single test. While it would be 
possible to select the sample of words for the test by simple random procedures, it might 
be important under certain circumstances to ''oversample" particular types of words (e.g., 



nouns). Thus, the person constructing the test must be careful to specify the particular 
sampling procedures to be employed. Finally, once the words have been selected, they 
must be put in a form that is testable. For example, one might use a multiple-choice 
procedure whereby the correct spelling of the word would be included with several 
incorrect spellings with the students' having to choose the former. What should emerge 
from this process is a spelling test that adequately reflects the domain of content that is to 
be measured by the test. 7 To take a different example, how would one go about 
establishing a content-valid measure of an attitude such as alienation? Presumably, one 
would begin by thoroughly exploring the available literature on alienation, hoping 
thereby to come to an understanding of the phenomenon. A thorough search and 
examination of the literature may suggest, for example, that alienation is properly 
conceived of in terms of the five dimensions proposed by Seeman: powerlessness, 
normlessness, meaninglessness, social isolation, and self estrangement. In addition, it 
may be useful to further subdivide these dimensions. One may want to subdivide 
powerlessness, for example, into its political, social, and economic aspects. It is then 
necessary to construct items that reflect the meaning associated with each dimension and 
each subdimension of alienation. It is impossible to specify exactly how many items need 
to be developed for any particular domain of content. But one point can be stated with 
confidence: It is always preferable to construct too many items rather than too few; 
inadequate items can always be eliminated, but one is rarely in a position to add "good" 
items at a later stage in the research when the original pool of such items is inadequate. 
From the above discussion, it should be clear that establishing a content-valid measure of 
an attitude such as alienation is far more difficult than establishing a content-valid 
achievement or proficiency test in some area (such as the spelling test above). There are 
two subtle but important differences between the two situations. First, however easy it 
may be to specify the domain of content relevant to a spelling test, the process is 
considerably more complex when dealing with the abstract concepts typically found in 
the social sciences. Indeed, it is difficult to think of any abstract theoretical concept—
including alienation—for which there is an agreed upon domain of content relevant to the 
phenomenon. Theoretical concepts in the social sciences have simply not been described 
with the required exactness. The second, related problem is that, in measuring most 
concepts in the social sciences, it is impossible to sample content. Rather, one formulates 
a set of items that is intended to reflect the content of a given theoretical concept. 
Without a random sampling of content, however, it is impossible to insure the 
representativeness of the particular items. These differences reveal quite clearly the rather 
fundamental limitations of content validity. In content validity, as Cronbach and Meehl 
observe, the "acceptance of the universe of content as defining the variable to be 
measured is essential" (1955:282). As we have illustrated, however easy this may be to 
achieve with regard to reading or arithmetic tests, it has proved to be exceeding difficult 
with respect to measures of the more abstract phenomena that tend to characterize the 
social sciences. Second, there is no agreed upon criterion for determining the extent to 
which a measure has attained content validity. In the absence of well -defined, objective 
criteria, Nunnally has noted that "inevitably content validity rests mainly on appeals to 
reason regarding the adequacy with which important content has been sampled and on the 
adequacy with which the content has been cast in the form of test items" (1978: 93). 
Indeed, Bohrnstedt has argued that "while we enthusiastically endorse the procedures, we 



reject the concept of content validity on the grounds that there is no rigorous way to 
assess it'' (forthcoming). In sum, while one should attempt to insure the content validity 
of any empirical measurement, these twin problems have prevented content validation 
from becoming fully sufficient for assessing the validity of social science measures. 
Construct Validity We have suggested that both criterion validity and content validity 
have limited usefulness for assessing the validity of empirical measures of theoretical 
concepts employed in the social sciences. It is partly for this reason that primary attention 
has been focused on construct validity. As Cronbach and Meehl observe, "Construct 
validity must be investigated whenever no criterion or universe of content is accepted as 
entirely adequate to define the quality to be measured" (1955: 282). Construct validity is 
woven into the theoretical fabric of the social sciences, and is thus central to the 
measurement of abstract theoretical concepts. Indeed, as we will see, construct validation 
must be conceived of within a theoretical context. Fundamentally, construct validity is 
concerned with the extent to which a particular measure relates to other measures 
consistent with theoretically derived hypotheses concerning the concepts (or constructs) 
that are being measured. While the logic of construct validation may at first seem 
complicated, it is actually quite simple and straightforward, as the following example 
illustrates. Suppose a researcher wanted to evaluate the construct validity of a particular 
measure of self-esteem—say, Rosenberg's self-esteem scale. Theoretically, Rosenberg 
(1965) has argued that a student's level of self -esteem is positively related to 
participation in school activities. Thus, the theoretical prediction is that the higher the 
level of self -esteem, the more active the student will be in school -related activities. One 
then administers Rosenberg's self-esteem scale to a group of students and also determines 
the extent of their involvement in school activities. These two measures are then 
correlated, thus obtaining a numerical estimate of the relationship. If the correlation is 
positive and substantial, then one piece of evidence has been adduced to support the 
construct validity of Rosenberg's self-esteem scale. 8 Construct validation involves three 
distinct steps. First, the theoretical relationship between the concepts themselves must be 
specified. Second, the empirical relationship between the measures of the concepts must 
be examined. Finally, the empirical evidence must be interpreted in terms of how it 
clarifies the construct validity of the particular measure. It should be clear that the 
process of construct validation is, by necessity, theory -laden. Indeed, strictly speaking, it 
is impossible to "validate" a measure of a concept in this sense unless there exists a 
theoretical network that surrounds the concept. For without this network, it is impossible 
to generate theoretical predictions which, in turn, lead directly to empirical tests 
involving measures of the concept. This should not lead to the erroneous conclusion that 
only formal, fully developed theories are relevant to construct validation.  
On the contrary, as Cronbach and Meehl observe: The logic of construct validation is 
involved whether the construct is highly systematized or loose, used in ramified theory or 
a few simple propositions, used in absolute propositions or probability statements [1955: 
284]. What is required is that one be able to state several theoretically derived hypotheses 
involving the particular concept. The more elaborate the theoretical framework, of 
course, the more rigorous and demanding the evaluation of the construct validity of the 
empirical measure. Notice that in the self-esteem example discussed above, we concluded 
that the positive association between Rosenberg's self-esteem scale and participation in 
school activities provided one piece of evidence supporting the construct validity of this 



measure. Greater confidence in the construct validity of this measure of self -esteem 
would be justified if subsequent analyses revealed numerous successful predictions 
involving diverse, theoretically related variables. Thus, construct validity is not 
established by confirming a single prediction on different occasions or confirming many 
predictions in a single study. Instead, construct validation ideally requires a pattern of 
consistent findings involving different researchers using different theoretical structures 
across a number of different studies. 9 But what is a researcher to conclude if the 
evidence relevant to construct validity is negative? That is, if the theoretically derived 
predictions and the empirical relationships are inconsistent with each other, what is the 
appropriate inference? Four different interpretations are possible (Cronbach and Meehl, 
1955). The most typical interpretation of such negative evidence is that the measure lacks 
construct validity. Within this interpretation, it is concluded that the indicator does not 
measure what it purports to measure. This does not mean, of course, that the indicator 
does not measure some other theoretical construct, but only that it does not measure the 
construct of interest. In other words, as negative evidence accumulates, the inference is 
usually drawn that the measure lacks construct validity as a measure of a particular 
theoretical concept. Consequently, it should not be used as an empirical manifestation of 
that concept in future research. Moreover, previous research employing that measure of 
the concept is also called into serious question. Unfortunately, however, this is not the 
only conclusion that is consistent with negative evidence based on construct validation. 
Negative evidence may also support one or more of the following inferences. First, the 
theoretical framework used to generate the empirical predictions is incorrect. To continue 
with the earlier example, it may be the case that, from a theoretical perspective, self-
esteem should not be positively related to participation in school activities. Therefore, a 
nonpositive relationship between these variables would not undermine the construct 
validity of Rosenberg's self-esteem scale but rather cast doubt on the underlying 
theoretical perspective. Second, the method or procedure used to test the theoretically 
derived hypotheses is faulty or inappropriate. Perhaps it is the case that, theoretically, self 
-esteem should be positively associated with participation in school activities and that the 
researcher has used a reliable and valid measure of self-esteem. However, even under 
these circumstances, the hypothesis will still not be confirmed unless it is tested properly. 
Thus, to take a simple example, the negative evidence could be due to the use of an 
inappropriate statistical technique or using the proper technique incorrectly. Third, the 
final interpretation that can be made with respect to negative evidence is that it is due to 
the lack of construct validity or the unreliability of some other variable(s) in the analysis. 
In a very real sense, whenever one assesses the construct validity of the measure of 
interest, one is also evaluating simultaneously the construct validity of measures of the 
other theoretical concepts. In the self -esteem example, it could be the case that 
Rosenberg's self -esteem scale has perfect construct validity but that the measure of 
"participation in school activities" is quite invalid or unreliable. Unfortunately, there is no 
foolproof procedure for determining which one (or more) of these interpretations of 
negative evidence is correct in any given instance. It is the total configuration of 
empirical evidence that lends credence to one interpretation rather than another. The first 
interpretation, that the measure lacks construct validity, becomes increasingly compelling 
as grounds for accepting the other interpretations become untenable. Most important, to 
the degree possible, one should assess the construct validity of a particular measure in 



situations in which the other variables are well-measured (i.e., have relatively high 
validity and reliability). Only in these situations can one confidently conclude that 
negative evidence is probably due to the absence of construct validity of a particular 
measure of a given theoretical concept. Theoretically relevant and well -measured 
external variables are thus crucial to the assessment of the construct validity of empirical 
measurements (Curtis and Jackson, 1962; Sullivan, 1971, 1974; Balch, 1974). The logic 
of construct validation usually implies that the relationship among multiple indicators 
designed to represent a given theoretical concept and theoretically relevant external 
variables should be similar in terms of direction, strength, and consistency. For example, 
two indicators, both of which are designed to measure social status, should have similar 
correlations with political interest, if the latter is a theoretically appropriate external 
variable for the former. Conversely, if the two empirical indicators of social status relate 
differentially to external variables, this implies that the indicators are not representing the 
same theoretical concept. Instead, this pattern of empirical relationships would suggest 
that the two indicators represent different aspects of social status or different concepts 
entirely for they do not behave in accordance with theoretical expectations. It is thus easy 
to see that construct validation is enhanced if one has obtained multiple indicators of all 
of the relevant variables. 10 Conclusion In this chapter we have discussed the three basic 
types of validity: content validity, criterion-related validity, and construct validity. Both 
content validity and criterion-related validity have limited usefulness in assessing the 
quality of social science measures. Content validity, we argued, is not so much a specific 
type of validity as it is a goal to be achieved in order to obtain valid measurements of any 
type—namely, that the empirical measure covers the domain of content of the theoretical 
concept. Content validity, however, provides no method or procedure to determine the 
extent to which this goal is achieved in practice. Thus, in the final analysis, it is not 
possible to determine the specific extent to which an empirical measure should be 
considered content valid. On the contrary, content validity, by necessity, is an imprecise 
standard against which to evaluate the validity of empirical measurements. Criterion-
related validity is similarly limited regarding generalized applicability in the social 
sciences. This is not to argue that there are not certain practical circumstances under 
which it makes a good deal of sense to validate a measure by comparing performance on 
that measure with performance on a particular criterion variable. Thus, it is a reasonable 
strategy to compare airplane pilots' performance on a written examination with their 
ability to fly an airplane in order to validate the written exam. Yet, as we have pointed 
out, the vast majority of social science measures are not of this character. Instead, 
because they usually represent abstract theoretical concepts, there are no known criterion 
variables against which they can be compared. In contrast to both content validity and 
criterion-related validity, construct validation has generalized applicability in the social 
sciences. The social scientist can assess the construct validity of an empirical 
measurement if the measure can be placed in theoretical context. Thus, construct 
validation focuses on the extent to which a measure performs in accordance with 
theoretical expectations. Specifically, if the performance of the measure is consistent with 
theoretically derived expectations, then it is concluded that the measure is construct valid. 
On the other hand, if it behaves inconsistently with theoretical expectations, then it is 
usually inferred that the empirical measure does not represent its intended theoretical 
concept. Instead, it is concluded that the measure lacks construct validity for that 



particular concept. This chapter has focused on the different types of validity, pointing 
out their different meanings, uses, and limitations. The next chapter will present a 
theoretical framework that can be used to assess the reliability of empirical 
measurements. 
 
3. Classical Test Theory  
The purpose of this chapter is to present the foundations of a model for assessing random 
measurement error. This model is referred to as classical test score theory, classical test 
theory, or simply test theory. Our discussion of classical test theory is, by design, an 
elementary one. For much more extensive discussions of this general topic, see Lord and 
Novick (1968), Stanley (1971), and Nunnally (1978). As we pointed out in Chapter 1, 
random error is involved in any type of measurement. Social scientists of course strive to 
eliminate as much random error from their measurements as possible, but even the most 
refined measuring instruments and techniques contain at least a limited amount of 
random error. Reliability of Measurements Since random error is an element that must be 
considered in the measurement of any phenomenon, we begin with the basic formulation 
where X is the observed score, t is the true score, and e is the random error. Equation 1 
says simply that every observed score on any measuring instrument is made up of two 
quantities: a true score, one that would be obtained if there were no errors of 
measurement, and a certain amount of random error. While the meaning of an observed 
score is obvious, what is the nature of a true score and random error? True Scores 
Usually, true scores are conceived of as hypothetical, unobservable quantities that cannot 
be directly measured. Rather, a person's true score is the average score that would be 
obtained if the person were remeasured an infinite number of times on that variable.  
No single measurement would pinpoint the true score exactly but the average of an 
infinite number of repeated measurements would be equal to the true score. But since it is 
impossible to ever obtain an infinite number of repeated measurements but only a finite 
number, true scores are hypothetical, not real, qualities. Nevertheless, they are central to 
classical test theory and reliability estimation. Random Error Equation 1 says that any 
particular observed score will not equal its true score because of random disturbances. 
These disturbances mean that on one testing occasion a person's obtained score would be 
higher than his true score while on another occasion his observed score would be lower 
than his true score. Moreover, the "positive" errors would be just as likely to occur as the 
"negative" errors, and their magnitudes would be similar as well. In short, the observed 
scores would be distributed symmetrically above and below the true score. Therefore, 
these errors are expected to cancel each other out in the long run—to have a mean or 
average score of zero. Intuitively, this is what is meant by random measurement error. 12 
These assumptions about true scores and random error can be represented more formally 
by the following equations: (a) the expected (mean) error score is zero: E(e) = 0; (b) the 
correlation between true and error scores is zero: r (t,e) = 0; (c) the correlation between 
the error score on the measurement and the true score on a second is zero: r (e1,t2) = 0; 
and (d) the correlation between errors on distinct measurements is zero: r (e1,e2) = 0. In 
these assumptions, E represents the expected value or "long-run" mean of the variable 
and r is the correlation between two variables in a population. From these assumptions, 
most particularly assumption b above, it follows that the expected value of the observed 
score is equal to the expected value of the true score. In formula form: E(X) = E(t) + 



E(e), but since E(e) = 0, then, The above results pertain to repeated measurements of a 
single variable for a single person. But reliability refers to the consistency of repeated 
measurements across persons rather than within a single person. Consequently, Equation 
1 must be rewritten so that it does not pertain to a single observed score, true score, and 
random error but rather to the variance of those properties. Thus But since assumption b 
above says that the correlation (and covariance) between true scores and errors is zero, 
then 2COV(t,e) = 0. Consequently, That is, the observed variance equals the sum of the 
true score and error variances. Given this, the ratio of true to observed variance is called 
the reliability of X as a measure of T. Reliability can also be expressed in terms of the 
error variance as follows: This equation follows directly from Equations 3 and 4 since 
Equation 5 makes it obvious that the reliability of a measure varies between 0 and 1. If all 
observed variance is contaminated with random error, then the reliability is zero since 1 – 
(1/1) = 0. Conversely, if there is no random error involved in the measurement of some 
phenomenon, then the reliability equals 1 since 1 (0/1) = 1. In sum, the greater the error 
variance, relative to the observed variance, the closer the reliability is to zero. But when 
the error variance approaches zero, then the reliability approaches unity. Finally, 
rearranging Equation 4, it is easy to see that That is, the true score variance of X equals 
the observed variance multiplied by the reliability of the measure. Thus, if one knew the 
reliability of a measure and its observed variance, then it would be easy to estimate its 
unobserved true score variance. Parallel Measurements The above discussion has pointed 
out what is meant by true scores and random error and has shown how reliability can be 
expressed in terms of the variances of these properties. But we have not yet described 
how one can estimate the reliability of a measure. This we propose to do in this section, 
showing that an estimate of a measure's reliability can be obtained by correlating parallel 
measurements. Two measurements are defined as parallel if they have identical true 
scores and equal variances. 13 Symbolically, then, X and X' are parallel if X = t + e and 
X' = t + e' where and t = t. It may be useful to think of parallel measurements as being 
distinct from one another but similar and comparable in important respects. For example, 
consider the following two items from Rosenberg's (1965) self-esteem scale: (1) I feel 
that I have a number of good qualities and (2) I feel that I'm a person of worth, at least on 
an equal plane with others. A respondent with high self-esteem will usually answer "often 
true" while a respondent with low self- esteem will usually answer "seldom true" to these 
statements, except, of course, for random fluctuations. However, this is precisely the 
point. If the response to the items differ only with respect to random fluctuations, then the 
items are considered to be parallel. Parallel items are functions of the same true score and 
the differences between them are the result of purely random error. The correlation 
between parallel measures can be expressed in terms of error, observed, and true scores 
as follows: Because, by assumption, errors are uncorrelated with true scores and 
uncorrelated with each other and the standard deviations of parallel measures are equal, 
this expression reduces to: The correlation between parallel measures is equal to the true 
score variance divided by the observed variance. The imporance of this result is that it 
allows the unobservable true score variance to be expressed in terms of r xx'' and s 2x *—
both of which are observable. In formula form: The true score variance is equal to the 
product of the observed variance and the correlation between parallel measures. Recalling 
from Equation 4 that reliability is r x = s t2/sx2,* it follows that the estimate of reliability 
is simply the correlation between parallel measures since The result given in Equation 10 



is quite important in estimating the reliability of empirical measurements. It indicates that 
if we have as few as two items of an single concept or a single item measured at two 
points in time, we can estimate the reliability of empirical measurements. It should also 
be clear that the greater the number of separate measurements of a given phenomenon, 
the more accurate (and higher) the estimate of its reliability will be. Of course this 
estimate will only be accurate if the items are actually parallel—that is, have identical 
true scores and equal error variances. It should also be noted that the correlation between 
the true and observed scores is equal to the square root of the reliability which, in turn, 
equals the square root of the correlation between parallel measures. That is, Finally, it 
should be recognized that given the assumptions of classical test theory and the definition 
of parallel measures (for a proof see Lord and Novick, 1968) that where y is any second 
measure and everything else is as above. That is, the correlation between a parallel 
measure and some other measure—for example, a particular criterion variable—cannot 
exceed the square root of the parallel measure's reliability. This means that the square 
root of the reliability of a measure provides an upper bound for its correlation with any 
other measure. For example, a measure with a reliability of .81 can never correlate 
greater than .9 with another variable. This demonstrates that reliability and criterion-
related validity are closely related. Equation 12 also demonstrates that, as Bohrnstedt 
observes, ''If one cannot reliably measure an attitude, he will never be able to predict 
actual behavior with it" (1970: 97). Conclusion This chapter has discussed the basic 
foundations of classical test theory, showing how it leads to the definition of reliability as 
being the ratio of the true to observed variance. The more true variance, relative to 
observed variance, the greater the reliability of the measure. We also showed that one 
way to estimate the reliability of a measure is to compute the correlation between parallel 
measurements. In the next chapter we will discuss the different methods for estimating 
the reliability of empirical measurements. These different methods are based on the 
logical foundations of classical test theory, as outlined in this chapter. 
 
4. Assessing Reliability  
In this chapter we discuss the four basic methods for estimating the reliability of 
empirical measurements. These are the retest method, the alternative-form method, the 
split-halves method, and the internal consistency method. This chapter also discusses 
how reliability estimates can be used to "correct" correlations for unreliability due to 
random measurement error. Finally, we briefly evaluate the strengths and weaknesses of 
the various methods for assessing reliability. Retest Method One of the easiest ways to 
estimate the reliability of empirical measurements is by the retest method in which the 
same test is given to the same people after a period of time. 14 One then obtains the 
correlation between scores on the two administrations of the same test. The retest method 
is diagramed in Figure 1. It is presumed that responses to the test will correlate across 
time because they reflect the same true variable, t. The equations for the two tests may be 
written as follows: But recalling that the definition of parallel measurements specifies 
that t = t and s e12 = se22* and that by the assumptions of classical test theory r(e1,t2) = 
0, and r (e1,e2) = 0, it can be shown that following exactly the same logic used to show 
that the correlation between parallel measures equals the reliability coefficient (see the 
derivation of Equation 10 above). That is, the reliability is equal to the correlation 
between the scores on the same test obtained at two points in time. 



Figure 1: A Schematic Representation of the Retest Method for Estimating Reliability If 
one obtains exactly the same results on the two administrations of the test, then the retest 
reliability coefficient will be 1.00. But, invariably, the correlation of measurements 
across time will be less than perfect. This occurs because of the instability of measures 
taken at multiple points in time. For example, a person may respond differently to a set of 
indicators used to measure self -esteem from one time to another because "the respondent 
may be temporarily distracted, misunderstand the meaning of an item," feel 
uncomfortable due to someone else being present, and so forth (Bohrnstedt, 1970: 85). 
All of these conditions reduce the reliability of empirical measurements. While test-retest 
correlations represent an intuitively appealing procedure by which to assess reliability, 
they are not without serious problems and limitations. Perhaps most important, 
researchers are often only able to obtain a measure of a phenomenon at a single point in 
time. Not only can it be unduly expensive to obtain measurements at multiple points in 
time but it can be impractical as well. Even if test-retest correlations can be computed, 
their interpretation is not necessarily straightforward. A low test-retest correlation may 
not indicate that the reliability of the test is low but may, instead, signify that the 
underlying theoretical concept itself has changed. For example, one's attitude toward 
capital punishment may be very different before and after the person has viewed an 
execution. But true change is interpreted as measurement instability in the assessment of 
retest reliability. Moreover, the longer the time interval between measurements, the more 
likely that the concept has changed. In other words, a naive interpretation of test-retest 
correlations can drastically underestimate the degree of reliability in measurements over 
time by interpreting true change as measurement instability. 15 A second problem that 
affects test-retest correlations and also leads to deflated reliability estimates is reactivity. 
Reactivity refers to the fact that sometimes the very process of measuring a phenomenon 
can induce change in the phenomenon itself. Thus, in measuring a person's attitude at 
time 1, the person can be sensitized to the subject under investigation and demonstrate a 
change at time 2, which is due solely to the earlier measurement. For example, if a person 
is interviewed about the likelihood of voting in an approaching election at time 1, the 
person might decide to vote (at time 2) and cast a ballot (at time 3) merely because he or 
she has been sensitized to the election. In this case, the test-retest correlation will be 
lower than it would be otherwise because of reactivity. While the test-retest correlations 
can certainly underestimate the reliability of empirical measurements, the more typical 
problem is overestimation due to memory. For example, the person's memory of his 
responses during the first interview situation is quite likely to influence the responses 
which he gives in the second interview. In other words, if the time interval between 
measurements is relatively short, the subjects will remember their earliest responses and 
will appear more consistent than they actually are. Memory effects lead to inflated 
reliability estimates. In fact, Nunally believes that "during the two-week's to one-month's 
time in which it is advisable to complete both testings, memory is likely to be a strong 
factor, thus, the retest method will often provide a substantial overestimate of what would 
be obtained from the alternative-form method" (1964: 85). Alternative-Form Method The 
alternative-form method is used extensively in education to estimate the reliability of all 
types of tests. In some ways, it is similar to the retest method in that it also requires two 
testing situations with the same people. However, it differs from the retest method in one 
very important regard: The same test is not given on the second testing but an alternative 



form of the same test is administered. These two forms of the test are intended to measure 
the same thing. Thus, for example, the two tests might focus on arithmetical operations 
with each containing 25 problems that are at approximately the same level of difficulty. 
Indeed, the two forms should not differ from each other in any systematic way. One way 
to help insure this is to use random procedures to select items for the different forms of 
the test. The correlation between the alternative forms provides the estimate of reliability. 
It is recommended that the two forms be administered about two weeks apart, thus 
allowing for day to-day fluctuations in the person to occur (Nunnally, 1964). The 
alternative-form method for assessing reliability is obviously superior to the simple retest 
method, primarily because it reduces the extent to which individuals' memory can inflate 
the reliability estimate. However, like the retest method, the alternative-form method 
when used for only two testing administrations does not allow one to distinguish true 
change from unreliability of the measure. For this reason, the results of alternative-form 
reliability studies are easier to interpret if the phenomenon being measured is relatively 
enduring, as opposed to being subject to rapid and radical alteration. The basic limitation 
of the alternative-form method of assessing reliability is the practical difficulty of 
constructing alternative forms that are parallel. It is often difficult to construct one form 
of a test much less two forms that display the properties of parallel measurements.  
Split-Halves Method  
Both the retest and the alternative-form methods for assessing reliability require two test 
administrations with the same group of people. In contrast, the split-halves method can be 
conducted on one occasion. Specifically, the total set of items is divided into halves and 
the scores on the halves are correlated to obtain an estimate of reliability. The halves can 
be considered approximations to alternative forms. As a practical example, let us assume 
that a teacher has administered a six-word spelling test to his students and would like to 
determine the reliability of the total test. He should divide the test into halves, determine 
the number of words that each student has spelled correctly in each half, and obtain the 
correlation between these scores. But as we have determined previously, this correlation 
would be the reliability for each half of the test rather than the total test. Therefore, a 
statistical correction must be made so that the teacher can obtain an estimate of the 
reliability of the six-word test, not just the three-word half tests. This "statistical 
correction" is known as the Spearman-Brown prophecy formula, derived independently 
by Spearman (1910) and Brown (1910). In particular, since the total test is twice as long 
as each half, the appropriate Spearman-Brown prophecy formula is: where r xx" is the 
reliability coefficient for the whole test and r xx' is the split-half correlation. Thus, if the 
correlation between the halves is .75, the reliability for the total test is: r xx'' = [(2) 
(.75)]/(1 + .75) = 1.50/1.75 = .857.  
The estimated reliability of the six-item test is .857. It is not difficult to see that the split-
half reliability varies between 0 and 1, taking on these limits if the correlation between 
the halves is .00 or 1.00, respectively. The more general version of the Spearman-Brown 
prophecy formula (of which Equation 16 is a special case) is: This gives the reliability of 
a scale which is N times longer than the original scale. Thus, if the reliability of the 
original scale is .40, then a scale five times that long has a reliability of .77 as follows: To 
take another example, if a five-item split-half correlates .2 with another five-item split-
half, then the estimated reliability for a scale four times that long would equal .5 as 
follows: "This means that, if one form of a test composed of 5 items correlates .2 with a 



parallel form of that test that also has 5 items, then a form composed of 20 items similar 
to the initial 5 should correlate .5 with a parallel form containing 20 items" (Stanley, 
1971: 395). By rearranging Equation 17 one can also determine the number of items that 
would be needed to attain a given reliability or what the split-half must be, given a 
desired reliability and test length. To estimate the number of items required to obtain a 
particular reliability, one uses the following formula: where r xx" is the desired 
reliability; r xx' is the reliability of the existing test; and N is the number of times test 
would be lengthened to obtain reliability of r xx" . Thus, if a 10-item test has a reliability 
of .60, then the estimated lengthening required to obtain a reliability of .80 would be: In 
other words, approximately 27 items would be required to reach a reliability of .80. There 
is a certain indeterminancy in using the split-halves technique to estimate reliability due 
to the different ways that the items can be grouped into halves. The most typical way to 
divide the items is to place the even- numbered items in one group and the odd-numbered 
items in the other group. But other ways of partitioning the total item set are also used 
including separately scoring the first and second halves of the items and randomly 
dividing the items into two groups. In fact, for a 10-item scale, there are 125 different 
possible splits. The point is that each split will probably result in a slightly different 
correlation between the two halves which, in turn, will lead to a different reliability 
estimate. Moreover, since the number of different splits is a function of the number of 
total items, obtaining a consistent estimate of reliability increases as the number of items 
increases. Thus, using the split-halves method, it is quite probable that different reliability 
estimates will be obtained—even though the same items are administered to the same 
individuals at the same time. Internal Consistency Method We noted above that an 
important limitation of the split-halves method of assessing reliability is that reliability 
coefficients obtained from different ways of subdividing the total set of items would not 
be the same. For example, it is quite possible that the correlation between the first and 
second halves of the test would be different from the correlation between odd and even 
items. However, there are methods for estimating reliability that do not require either the 
splitting or repeating of items. Instead, these techniques require only a single test 
administration and provide a unique estimate of reliability for the given test 
administration. As a group, these coefficients are referred to as measures of internal 
consistency. By far the most popular of these reliability estimates is given by Cronbach's 
alpha (Cronbach, 1951), which can be expressed as follows: where N is equal to the 
number of items; Ss 2 (Y i ) is equal to the sum of item variances; and s 2x * is equal to 
the variance of the total composite. If one is working with the correlation matrix rather 
than the variance-covariance matrix, then alpha reduces to the following expression: 
where N is again equal to the number of items and p* is equal to the mean interitem 
correlation. To take a hypothetical example applying Equation 20, if the average 
intercorrelation of a six-item scale is .5, then the alpha for the scale would be: To give an 
example of how alpha is calculated, consider the 10-item self -esteem scale developed by 
Rosenberg (1965). The intercorrelations among the items for a sample of adolescents are 
presented in Table 3 (for further discussion of these data see the appendix). To find the 
mean interitem correlation we first sum the 45 correlations in Table 3: .185 + .451 + .048 
+ … + .233 = 14.487. Then we divide this sum by 45: 14.487/45 = .32. Now we use this 
mean interitem correlation of .32 to calculate alpha as follows: From Equation 20 it is not 
difficult to see that alpha varies between .00 and 1.00, taking on these limits when the 



average interitem correlations are zero and unity, respectively. The interpretation of 
Cronbach's alpha is closely related to that given for reliability estimates based on the 
split- halves method. Specifically, coefficient alpha for a test having 2N items is equal to 
the average value of the alpha coefficients obtained for all possible combinations of items 
into two half-tests (Novick and Lewis, 1967). Alternatively, alpha can be considered a 
unique estimate of the expected correlation of one test with an alternative form 
containing the same number of items. Nunnally (1978) has demonstrated that coefficient 
alpha can also be derived as the expected correlation between an actual test and a 
hypothetical alternative form of the same length, one that may never be constructed. 
Novick and Lewis (1967) have proven that, in general, alpha is a lower bound to the 
reliability of an unweighted scale of N items, that is, r x ³ a. It is equal to the reliability if 
the items are parallel. Thus, the reliability of a scale can never be lower than alpha even if 
the items depart substantially from being parallel measurements. In other words, in most 
situations, alpha provides a conservative estimate of a measure's reliability. Equation 20 
also makes clear that the value of alpha depends on the average interitem correlation and 
the number of items in the scale. Specifically, as the average correlation among items 
increases and as the number of items increases, the value of alpha increases. This can be 
seen by examining Table 1 which shows the value of alpha given a range in the number 
of items from 2 to 10 and a range in the average interitem correlation from .0 to 1.0. For 
example, TABLE 1 Values of Cronbach's Alpha for Various Combinations of Different 
Number of Items and Different Average Interitem Correlations Number of Items Average 
Interitem Correlation .0 .2 .4 .6 .8 1.0 2 .000 .333 .572 .750 .889 1.000 4 .000 .500 .727 
.857 .941 1.000 6 .000 .600 .800 .900 .960 1.000 8 .000 .666 .842 .924 .970 1.000 10 .000 
.714 .870 .938 .976 1.000 a 2-item scale with an average iteritem correlation of .2 has an 
alpha of .333. However, a 10-item scale with 
same average interitem correlation has an alpha of .714. Similarly, an 8-item scale with 
an average interitem correlation of .2 has an alpha of .666 whereas if the 8 items had an 
average intercorrelation of .8, then the scale's alpha would be .970. In sum, the addition 
of more items to a scale that do not result in a reduction 
average interitem correlation will increase the reliability of one's measuring instrument. 
While increasing the number of items in a scale can thus improve the scale's reliability, 
there are significant limitations to this procedure. First, the adding of items indefinitely 
makes progressively less impact on the reliability. Thus, given an average interitem 
correlation of .4, increasing the number of items from 2 to 4 increases the alpha for the 
scale by .155 (i.e., .727 – .572 = .155). However, increasing the number of items from 8 
to 10 with the same average interitem correlation only increases the alpha by .028 (i.e., 
.870 – .842 = .028). Second, the greater the number of items in a scale, the more time and 
resources are spent constructing the instrument. It should be noted, finally, that adding 
items to a scale can, in some instances, reduce the lengthened scale's reliability if the 
additional items substantially lower the average interitem correlation. Alpha is more 
difficult to compute than coefficients based on other methods of assessing reliability. In 
the retest, alternative-form, and split-halves methods, it is only necessary to calculate a 
single correlation to obtain the desired reliability estimate. Specifically, in the retest 
method, scores for the same group of people on the same test administered on two 
occasions are correlated; in the alternative-forms approach, scores on different versions 
of the same test are correlated; and in the split-halves method, the items are divided into 



arbitrary halves and scores between the half-tests are correlated. In contrast, as we have 
seen, alpha depends on the average intercorrelation among all of the items. Yet, it is 
important to realize that although more complex computationally, alpha has the same 
logical status as coefficients arising from the other methods of assessing reliability. This 
is easy to see once we consider some additional properties of parallel measurements. In 
addition to having equal true scores and equal error variances, parallel measurements are 
assumed to have the following useful properties: (1) The expected (mean) values of 
parallel measures are equal: E(X) = E(X'). (2) The observed score variance of parallel 
measures is equal: s 2x = sx'2 . * (3) The intercorrelations among parallel measurements 
are equal from pair to pair: r xx' = r xx'' = r x'x" . (4) The correlations of parallel measures 
with other variables are equal: r xy = r x'y = r x"y . These properties imply that there are 
no systematic differences between parallel measurements; instead, they only differ from 
another because of strictly random error, and thus, for essential purposes, are completely 
interchangeable. Moreover, since parallel measurements have equal intercorrelations, the 
average interitem correlation is simply equal to the correlation between any arbitrary pair 
of items. In other words, if the items are truly parallel, the average interitem correlation 
accurately estimates all of the correlations in the item matrix. Thus, logically, using the 
average correlation in the calculation of alpha amounts to exactly the same thing as 
calculating a simple correlation between parallel measurements. 
 
KR20  
Cronbach's alpha is a generalization of a coefficient introduced by Kuder and Richardson 
(1937) to estimate the reliability of scales composed of dichotomously —scored items. 
Dichotomous items are scored one or zero depending on whether the respondent does or 
does not possess the particular characteristic under investigation. Thus, for the items 
making up a spelling test, a score of 1 would be given when the students spelled a 
particular word correctly but zero if the word is spelled incorrectly. To determine the 
reliability of scales composed of dichotomously scored items, one uses the following 
Kuder-Richardson formula number 20 (symbolized KR20): where N is the number of 
dichotomous items; p i is the proportion responding "positively" to the i th item; q i is 
equal to 1 - p i ; and s 2x * is equal to the variance of the total composite. Since KR20 is 
simply a special case of alpha, it has the same interpretation as alpha; that is, it is an 
estimate of the expected correlation between one test and a hypothetical alternative form 
containing the same number of items. Correction for Attenuation Whatever particular 
method is used to obtain an estimate of reliability, one of its important uses is to "correct" 
correlations for unreliability due to random measurement error. That is, if we can 
estimate the reliability of each variable, then we can use these estimates to determine 
what the correlation between the two variables would be if they were made perfectly 
reliable. The appropriate formula is as follows: where r xtyt is the correlation corrected 
for attenuation; r xiyj is the observed correlation; r xx' is the reliability of X; and r yy' is 
the reliability of Y. For example, if the observed correlation between two variables was .2 
and the reliability of each variable was .5, then the correlation corrected for attentuation 
would be: This means that the correlation between these two variables would be .4 if both 
were perfectly reliable (measured without random error). Table 2 illustrates the behavior 
of the correlation coefficient under varying conditions of correction for attenuation. Table 
2A shows the value of the correlation corrected for attenuation given that the observed 



correlation is .3 with varying reliabilities of X and Y. As an example, when the 
reliabilities of X and Y are .4, respectively, the corrected correlation is .75. When the 
reliabilities of X and Y are 1.0, respectively, the corrected correlation is equal to the 
observed correlation of .3. Table 2B presents similar calculations when the observed 
correlation is .5. Examining sections A and B of Table 2 it is clear that the higher the 
reliabilities of the variables, the less the corrected correlation differs from the observed 
correlation. Table 2C presents the value of the correlation that one will observe when the 
correlation between X t and Y t is .5 under varying conditions of reliability. If the 
reliabilities of X and Y are .8, respectively, the observed value of a theoretical .5 
correlation is .4. Table 2D presents similar calculations when the correlation between X t 
and Y t is .7. For example, even if the theoretical correlation between X t and Y t is .7, 
the observed correlation will be only .14 if the reliabilities are quite low (.2). Thus, one 
must be careful not to conclude that the theoretical correlations are low simply because 
their observed counterparts are low; it may instead be the case that the measures are quite 
unreliable. Conclusion This chapter has discussed four methods for assessing the 
reliability of empirical measurements. For reasons mentioned in the chapter, neither the 
retest method nor the split-halves approach is recommended for estimating reliability. 
The major defect of the retest method is that experience in the first testing usually will 
influence responses in the second testing. The major problem with the split-halves 
approach is that the correlation between the halves will differ somewhat depending on 
how the total number of items is divided into halves. As Nunnally argues, "it is best to 
think of the corrected correlation between any two halves of a test as being an estimate of 
coefficient alpha. Then it is much more sensible to employ coefficient alpha than any 
split-half method" (1978: 233). In contrast, the alternative-form method and coefficient 
alpha provide excellent techniques for assessing reliability. The practical limitation of 
using the alternative-form method is that it can be quite difficult to construct alternative 
forms of a test that are parallel. One recommended way of overcoming this limitation is 
by randomly dividing a large collection of items in half to form two randomly parallel 
tests. In sum, if it is possible to have two test administrations, then the correlation 
between alternative forms of the same test provides a very useful way to assess 
reliability. Coefficient alpha should be computed for any multiple-item scale. It is 
particularly easy to use because it requires only a single test administration. Moreover, it 
is a very general reliability coefficient, encompassing both the Spearman-Brown 
prophecy formula as well as the Kuder-Richardson 20. Finally, as we have seen, alpha is 
easy to compute, especially if one is working with a correlation matrix (for further details 
on the computation of alpha see Bohrnstedt, 1969). The minimal effort that is required to 
compute alpha is more than repaid by the substantial information that it conveys about 
the reliability of a scale. What is a satisfactory level of reliability? Unfortunately, it is 
difficult to specify a single level that should apply in all situations. As a general rule, we 
believe that reliabilities should not be below .80 for widely used scales. At that level, 
correlations are attenuated very little by random measurement error. At the same time, it 
is often too costly in terms of time and money to try to obtain a higher reliability 
coefficient. But the most important thing to remember is to report the reliability of the 
scale and how it was calculated. Then other researchers can determine for themselves 
whether it is adequate for any particular purpose. 
TABLE 2 Examples of Correction for Attenuation   



Notes  
1. Stevens's definition of measurement is considerably less stringent than some earlier 
definitions, which proposed that the term be restricted to the assignment of numbers to 
objects or events only when there exist operations upon the objects or events similar to 
the arithmetic operations upon the numbers. For a brief but lucid discussion of various 
efforts to define measurement, see Jones (1971).  
2. It may seem that it is possible (even quite likely) that repeated measurements of some 
attributes, especially physical attributes, would exactly duplicate each other. But as 
Stanley has aptly stated, "the discrepancies between two sets of measurements may be 
expressed in miles and, in other cases, in millionths of a millimeter; but, if the unit of 
measurement is fine enough in relation to the accuracy of the measurements, 
discrepancies always will appear" (1971: 356).  
3. For a comprehensive listing of various factors that contribute to error variance and 
systematic variance in educational testing, see Stanley (1971).  
4. For discussions of the conflicting evidence concerning acquiescence, see Bentler et al. 
(1972) and Rorer (1967). 
5. Nunnally (1978) argues that even modest correlations (e.g., a correlation of .30) 
between test and criterion can prove quite useful for selection purposes. He also argues 
that the "proper way to interpret a validity coefficient is in terms of the extent to which it 
indicates a possible improvement in the average quality of persons that would be 
obtained by employing the instrument in question" (1978: 91). 
6. As we will discuss later in this volume, random measurement error always attenuates 
simple correlations. In other words, low validity coefficients can result from substantial 
unreliability in either the measuring instrument or the critierion variable. Therefore, a low 
validity coefficient does not necessarily mean that the measuring instrument and/or the 
criterion are invalid; instead, it may indicate that substantial random error affects either or 
both measurements. It is especially useful to obtain independent evidence concerning the 
extent of the reliability of the criterion variable, although its measurement is often 
neglected in practical situations.  
7. Sometimes the term "face validity" is used in the social sciences. This type of validity 
should not be confused with content validity. Face validity, as (1978: 111) has noted, 
"concerns judgements about an instrument after it is constructed Nunnally," focusing on 
the extent to which it "looks like'' it measures what it is intended to measure. Thus, face 
validity is, at best, concerned with only one aspect of content validity.  
8. It is important to realize that the size of this correlation will depend on the reliability 
and validity of both measures. Thus, in assessing construct validity, it is important to 
obtain independent evidence concerning the reliability and validity of the "second" 
measure. The situation is the same as that involved in evaluating criterion-related 
validity, as discussed above (see Note 6).  
9. There are very few published studies in which construct validation is the central 
concern of the analysis. For a useful example see Hofstetter's (1971) careful analysis of 
the construct validity of the "amateur politician."  
10. Campbell and Fiske's (1959) concepts of convergent and discriminant validity can be 
seen as a logical extension of construct validity in which each of the constructs is 
measured by multiple methods. Convergent validity refers to the extent to which different 
methods of measuring the same trait yield similar results; the fundamental assumptions 



being that different methods of measuring the same trait should converge on the same 
result. Discriminant validity, on the other hand, refers to the extent to which similar or 
identical methods measuring different traits lead to different results; that is, discriminant 
validity implies that traits that are truly distinct from one another should lead to different 
results even if they are measured by the same method. For 
discussion of how convergent and discriminant validity are analyzed within the 
multitrait-multimethod matrix, see Sullivan and Feldman (1979).  
11. In formal terms, this "average score" is referred to as the expected value (or mean) if 
someone were remeasured an infinite number of times on that variable.  
12. In formal terms, random error can be defined as error that has a definite (usually 
equal) probability of occurring in the long run.  
13. Parallel measurements have a number of other interesting properties but these are not 
central for the development here. For further discussion, see Lord and Novick (1968). It 
is worth noting that many of the results presented here apply not only to parallel 
measurements but also to tests or items that are tau-equivalent, essentially tau-equivalent, 
or congeneric. Measurements are tau-equivalent if they have identical true scores but 
possibly different error variances. Measurements are essentially tau-equivalent if their 
true scores differ by an additive constant. And measurements are congeneric if their true 
scores are linearly dependent on each other. Thus, the most restrictive measurement 
model is the parallel model whereas the least restrictive is the congeneric model. For 
further discussion of these models, see Greene and Carmines (forthcoming), Jöreskog 
(1971), Lord and Novick (1968), and Novick and Lewis (1967).  
14. A variety of other terms (e.g., items, indicators) could be used in place of tests here 
with no loss of generality to the discussion.  
15. While it is impossible to separate true change from unreliability in the retest method, 
Heise (1969) has shown that this can be obtained if there are at least three occasions on 
which the variable is measured and if one is willing to make certain simplifying 
assumptions. For further discussion of methods for assessing the reliability and stability 
of measurements over time, see Achen (1975), Wheaton et al. (1977), Wiley and Wiley 
(1970), Wiley and Wiley (1974), and Erikson (1978).  
16. Our discussion of the role of factor analysis in reliability and validity assessment only 
provides an introduction to this rather complex topic. For more thorough discussions see 
Carmines and Zeller (1974), Zeller and Carmines (1976, forthcoming), Greene and 
Carmines (forthcoming), Allen (1974), Armor (1974), Heise and Bohrnstedt (1970), 
Smith (1974a, 1974b), Jöreskog (1971), and Bentler (1969).  
17. For a thorough discussion of the methods of factor analysis, see Harman (1976). Kim 
and Mueller's (1978a, 1978b) volumes on factor analysis in this series provide a very 
useful introduction to the topic. 
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Appendix:  
The Place of Factor Analysis in Reliability and Validity Assessment  
Since factor analysis is often used to construct scales in the social sciences, this appendix 
will discuss how this statistical technique can be used to assess the reliability of multiple-
item measures. We will also briefly discuss and illustrate the uses and limitations of 
factor analysis in assessing the validity of empirical measurement. 16 Factor Analysis 
and Reliability Estimation In discussing the various methods for assessing reliability, we 
noted that one of the assumptions underlying these methods is that the items in the scale 
are parallel, which implies that the items measure a single phenomenon equally. As 
Armor (1974) observes, this suggests that there are two conditions under which real data 
can violate these assumptions: if the items measure a single phenomenon unequally or if 
the items measure more than one concept equally or unequally. Factor analysis is 
explicitly designed to cope with both of these situations. Essentially factor analysis 
consists of a variety of statistical methods for discovering clusters of interrelated 
variables. 17 It is typically the case that more than one of these clusters, or factors, 
underlies a set of items. Each factor is defined by those items that are more highly 
correlated with each other than with the other items. A statistical indication of the extent 
to which each item is correlated with each factor is given by the factor loading. In other 
words, the higher the factor loading, the more the particular item contributes to the given 
factor. Thus, factor analysis also explicitly takes into consideration the fact that the items 
measure a factor unequally. In sum, reliability coefficients based on factor analysis are 
not as restrictive as those methods for estimating reliability that assume parallel items. 
We shall now discuss two of the more popular of these coefficients.  
Theta  
Coefficient theta can be easily understood once we consider in greater detail principal 
components, the factor analysis model on which this reliability coefficient is based. 
Given a set of items in which there are no perfect intercorrelations, a principal-
component analysis will yield as many components as there are items. The components 
are extracted in decreasing order of importance in terms of the amount of variance 
associated with each component. That is, the first component accounts for the largest 
proportion of variance among the items, the second component for the second largest 
proportion that is independent of the first component, and so on. Corresponding to each 
of these components is a series of loadings. The size of these loadings gives an indication 
of the contribution that the item makes to each component. Since the components are 
extracted in decreasing order of importance, it follows that the sum of (and average of) 
the squared loadings (i.e., the eigenvalue) will be higher for the first components than for 
the last extracted components. Thus, there is a negative relationship between the 
eigenvalue of a component and when that component was extracted. For example, the 
third extracted component always has an eigenvalue that is less than the second 
component and greater than the fourth component. Given these properties of principal 
components, what should one expect if a set of items is measuring a single phenomenon? 
Several aspects of the extracted (i.e., unrotated) factor matrix could support this 
hypothesis: (1) the first extracted component should explain a large proportion of the 
variance in the items (say > 40%); (2) subsequent components should explain fairly equal 
proportions of the remaining variance except for a gradual decrease; (3) all or most of the 
items should have substantial loadings on the first component (say > .3); and (4) all or 



most of the items should have higher loadings on the first component than on subsequent 
components. Now consider the alternative situation in which the researcher has 
hypothesized that a set of items measures more than a single phenomenon. In this case, a 
principal -component analysis of the items should meet the following conditions: (1) the 
number of statistically meaningful components should equal the number of hypothesized 
phenomena; (2) after rotation, specific items should have higher factor loadings on the 
hypothesized relevant component than on other components; and (3) components 
extracted subsequent to the number of hypothesized components should be statistically 
unimportant and substantively uninterpretable. When a set of items is measuring more 
than a single underlying phenomenon, it is often necessary to rotate the extracted 
components in order for them to be optimally interpretable. At this point, the researcher 
has two options in constructing scales. First, scales can be computed directly from the 
rotated factor structure. Alternatively, subsets of items defining each of the rotated 
components can be refactored according to the principal -component procedure. However 
the items and their corresponding weights are chosen, the reliability of the resulting scale 
can be estimated using the following formula for theta: where q represents theta; N equals 
the number of items; and l 1 is the largest (i.e., the first) eigenvalue. Theta lends itself to 
many different interpretations but it is understood most simply as being a special case of 
Cronbach's alpha. Specifically, theta is the alpha coefficient for a scale in which the 
weighting vector has been chosen so as to make alpha a maximum. In other words, theta 
may be considered a maximized alpha coefficient (Greene and Carmines, forthcoming). 
Omega Another estimate of reliability for linear scales that has gained some popularity is 
omega, a reliability coefficient introduced by Heise and Bohrnstedt (1970). Omega is 
based on the common factor analysis model. In this model, unities have been replaced by 
community estimates in the main diagonal of the correlation matrix prior to factoring. 
Omega takes the general form: 
where W is omega; s 2i * is equal to the variance of the ith item; h 2i* is equal to the 
communality of the ith item; and SSs xixj is the sum of the covariances among the items. 
If one is working with correlations, then the formula for omega reduces to: where a is 
equal to the number of items and b is the sum of the correlations among the items. There 
are three important diffences between omega and theta (Armor, 1974). First, they are 
based on different factor-analytic models. Theta is grounded in the principal -components 
model whereas omega is based on the common factor analysis model. This means that 
one always uses 1.0's in the main diagonal to compute the eigenvalues on which theta is 
based but the value of omega depends, in part, on communalities, which are estimated 
quantities not fixed ones. This is another way of saying that because omega is based on 
estimated communalities, there is an element of indeterminancy in its calculation that is 
not present in theta. Finally, unlike theta, "omega does not assess the reliability of 
separate scales in the event of multiple dimensions" (Armor, 1974: 47). Rather, omega 
provides a coefficient that estimates the reliability of all the common factors in a given 
item set. We should note, finally, the relationship among theta, omega, and alpha. If the 
items making up the scale are parallel measurements, then all three coefficients will be 
equal to one another and will equal the reliability of the scale. Otherwise, the following 
order will hold: alpha < theta < omega. Thus, we again see that alpha is a lower bound for 
the reliability of multiitem scales. And of these three internal consistency coefficients, 
omega provides the highest estimate of reliability—that is, the closest estimate to the true 



reliability of the measure. (For further discussion of these reliability coefficients, see 
Greene and Carmines, forthcoming.) Factor Analysis and Construct Validity Factor 
analysis can also be useful for assessing the validity of empirical measures (Nunally, 
1978). However, if the results of a factor analysis are interpreted without theoretical 
guidance, it can lead to misleading conclusions concerning the validity of measuring 
instruments. In order to illustrate the uses and especially the limitations of assessing 
construct validity through factor analysis, we will focus on Rosenberg's (1965) 
conceptualization and measurement of self -esteem. Rosenberg defines self -esteem as the 
overall attitude that a person maintains with regard to his own worth and importance. 
Rosenberg conceptualizes self -esteem as a unitary personal predisposition, and he 
constructed 10 items designed to measure this trait. The data for this analysis come from 
a study of the relationship between personality traits and political attitudes among high 
school students (Carmines, 1978). Factor-Analytic Interpretations of Self-Esteem A 
correlation matrix of the 10 items used to measure self-esteem is presented in Table 3. On 
the whole, the items intercorrelate positively, consistently, and significantly. But do the 
items form a single dimension of self - esteem? A common factor (principal axes) 
analysis (using SMC's in the main diagonal) of the items is shown in Table 4. Within a 
strict factor-analytic framework, Rosenberg's conceptualization implies that we should 
observe a unifactorial structure. However, the results of the factor analysis do not clearly 
support this presumption. Rather, the factor solution indicates that there are two 
substantial empirical factors that underlie these data. Further, when these two factors are 
rotated to a varimax solution, as shown in Table 4, they show a fairly distinct clustering 
of items. Factor I is defined principally by items 1, 3, 5, 8, and 10 while items 2, 4, 6, 7, 
and 9 most clearly define factor II. We may refer to factor I as the positive self-esteem 
factor, since those items that load most strongly on it are reflective of a positive, 
favorable attitude toward the self. For example, one of these items states, "I feel that I'm a 
person of worth, at least on an equal place with others." By contrast, those items that 
most clearly define factor II have in common a negative, unfavorable reference to the 
self. For example, the item that loads highest on factor II states, "At times I think I am no 
good at all." We may refer to factor II, therefore, as the negative self-esteem factor. These 
empirical factors of self -esteem are not polar opposites. Rather, the results of the factor 
analysis indicate that the dimensions are definitely distinguishable from one another, 
forming as they do separate identifiable factors. Moreover, when we factor analyze the 
two sets of items separately, one and only one substantial factor emerges for each 
dimension of self-esteem (see Table 5). Further, the items forming these factors show 
fairly strong loadings on their respective factors. That is, the negative self-esteem items 
have loadings ranging from .351 to .757 on their principal factor, as shown in Table 5. 
This analysis offers strong support for the bidimensionality of self-esteem.  
TABLE 3 Correlation Matrix of Self-Esteem Items a Items 1 2 3 4 5 6 7 8 9 
1 – .185 .451 .399 .413 .263 .394 .352 .361 .204 2   – .048* .209 .248 .246 .230 .050* 
.277 .270 3     – .350 .399 .209 .381 .427 .276 .332 4       – .369 .415 .469 .280 .358 .221 5 
        – .338 .446 .457 .317 .425 6           – .474 .214 .502 .189 7             – .315 .577 .311 8 
              – .299 .374 9                 – .233 10                   
a. N = 340. *p > .05. For all other correlations in Table p < .001.  
1. I feel that I have a number of good qualities. b  
2. I wish I could have more respect for myself. c  



3. I feel that I'm a person of worth, at least on an equal plane with others.  
4. I feel I do not have much to be proud of.  
5. I take a positive attitude toward myself.  
6. I certainly feel useless at times.  
7. All in all, I'm inclined to feel that I am a failure.  
8. I am able to do things as well as most other people.  
9. At times I think I am no good at all.  
10. On the whole, I am satisfied with myself. b.  
Response categories for items are: (1) Never true, (2) Seldom true, (3) Sometimes true, 
(4) Often true, (5) Almost always true.  
c. Items 2, 4, 6, 7, and 9 have been reflected such that higher scores indicate higher self-
esteem. 
 
TABLE 4  
Factor Loadings of the Self-Esteem Items Items a Extracted Rotated I II h I II h 1 .590 
.109 .360 .495 b .339 .360 2 .328 –.176 .138 .109 .356 .138 3 .581 .314 .436 .633 .187 
.436 4 .600 –.085 .367 .365 .483 .367 5 .669 .198 .487 .614 .332 .487 6 .577 –.346 .453 
.165 .653 .453 7 .731 –.202 .575 .376 .659 .575 8 .549 .387 .451 .662 .113 .451 9 .640 –
.359 .539 .200 .706 .539 10 .480 .196 .269 .478 .200 .269 Eigenvalue 3.410 .666   2.043 
2.032 Percent of Variance .341 .067 .408 .204 .203 .407  
a. For an exposition of items, see Table 3.  
b. The underlined factor loading indicates which of the factors each item loads higher on.  
 
An Alternative Interpretation of the Two-Factor Solution The factor analyses of 
Rosenberg's self -esteem scale have indicated that the items do not necessarily form a 
single empirical dimension of self -esteem but rather that they may reflect two distinct 
components of the self - image. Because of the items that tended to define each factor, we 
labeled one of these components the positive self-esteem factor while we referred to the 
other component as the negative self -esteem factor. We now want to consider an 
alternative interpretation of the two-factor solution. Specifically, we want to consider the 
possibility that the dual dimensionality of self-esteem is a function of nonrandom 
measurement error: namely, response set among the two sets of scale items. Response set 
may be defined as the general tendency to respond to interview or questionnaire items in 
a particular manner, irre spective of their content. Clearly, this is a very real possibility in 
the present case, for the items forming each of the dimensions of self -esteem are worded 
in a similar manner. That is, the items which load higher on the positive self-esteem 
factor are all worded in a positive direction while those loading higher on the negative 
self- esteem factor are all worded in a negative direction. Given this situation, it is not 
unusual to find somewhat higher correlations among items which are worded in the same 
direction than among items which differ in the direction of their wording. This, of course, 
is precisely what we observed in the intercorrelations among the self-esteem items. 
Notice also that the positive and negative signs of the factor loadings on the second 
principal factor in the unrotated structure are representative of the positive and negative 
wording of the items.  
 



TABLE 5 Factor Loadings of Positive and Negative Self-Esteem Items Factored 
Separately Positive Self-Esteem Items   Item Factor Loading h 2    1 .568 .323 3 .651 
.424 5 .699 .489 8 .658 .433 10 .524 .275 Negative Self-Esteem Items   Item Factor 
Loading h 2 2 .351 .123 4 .577 .333 6 .674 .454 7 .757 .573 9 .727 .528 
 
In addition, since factor analysis does nothing more than redefine and simplify the 
correlation matrix, we would also expect that response set among items would 
contaminate the factor structure of those items. A two-factor empirical solution, in other 
words, does not invariably indicate that the two factors measure two separate theoretical 
concepts. It may also be an indication that the items are an empirical representation of a 
single concept, self - esteem, with the second factor due to a method artifact such as 
response set. Let us assume, for the moment, that the proper interpretation is a single 
theoretical concept with response set producing the second factor. In this case, the first 
factor obtained from the principal -factor solution represents theoretically valid variance 
while the second factor represents systematic error variance. The point is that a factor 
analysis itself cannot differentiate between these two interpretations, since it only reflects 
the differential pattern of correlations among the scale items. In summary, the factor 
analysis of the scale items does not provide unambiguous, and even less unimpeachable, 
evidence of the theoretical dimensionality underlying these self-esteem items. On the 
contrary, since the bifactorial structure can be a function of a single theoretical dimension 
which is contaminated by a method artifact as well as being indicative of two separate, 
substantive dimensions, the factor analysis leaves the theoretical structure of self-esteem 
indeterminate. Resolving the Alternative Interpretation of the Two-Factor Solution Factor 
analysis does not resolve the issue of the conceptual/theoretical structure of Rosenberg's 
self-esteem scale. Following the logic of construct validation, the appropriate procedure 
is to compare the correlations of each empirical dimension of self-esteem with a set of 
theoretically relevant external variables. If the positive and negative self-esteem factors 
measure different components of the self-image, they should relate differentially to at 
least some of these external variables. If, on the other hand, the factors measure a single 
dimension of self -esteem with the bifactorial structure being due to a method artifact, the 
two factors should relate similarly to these theoretically relevant variables. By following 
this procedure, we will be able to evaluate the theoretical structure of self-esteem. 
 
Table 6 presents the correlations between each dimension of self-esteem and 16 external 
variables. These variables cover three broad substantive areas: socioeconomic 
background factors, other psychological predispositions, and social and political attitudes. 
Almost all of the correlations are statistically significant (at the .05 level) and a majority 
of them seem to be substantively important as well. The positive and negative self- 
esteem scales, in other words, seem to capture a salient dimension of the adolescent's 
self-image. But these factors seem to tap the same, rather than different, dimensions, for 
their correlation with these theoretically relevant external variables are almost identical to 
one another in terms of direction, strength, and consistency. Indeed, the average 
difference between correlations across all 16 variables is approximately .03, with the 
highest difference being .05. None of these differences is statistically significant (at even 
the .25 level), and it would be extremely difficult to attach theoretical importance to the 
differences as well. In summary, while the factor analysis left the theoretical structure of 



the self-esteem items indeterminate, the evidence provided by an analysis of their 
construct validity leads to a more definitive conclusion: namely, that the items measure a 
single theoretical dimension of self-esteem. The two-factor solution, therefore, offers 
only spurious evidence for the dual theoretical dimensionality of self-esteem. The more 
appropriate interpretation is that the bifactorial structure of the items is a function of a 
single theoretical dimension of self -esteem that is contaminated by a method artifact, 
response set. Conclusion This appendix has discussed the relation of factor analysis to 
reliability and validity assessment. As we have seen, there is a very close connection 
between factor analysis and reliability assessment. In particular, reliability coefficients 
derived from factor analysis models make less stringent assumptions about items than 
alpha-based reliability which presumes that the items are parallel measures. The use of 
factor analysis in assessing validity is much more of a two-edged sword. While it can be 
useful for this purpose, factor analysis does not always lead to unambiguous inferences 
concerning the underlying theoretical dimensionality of a set of items. Instead, naive and 
simplistic interpretation of factor structures can be misleading in terms of determining the 
substantive nature of empirical measures. We have seen how response set can artificially 
produce an inference of two underlying dimensions when in fact there is only one. Any 
method artifact that can systematically alter the correlations among items may produce 
this kind of faulty inference. In summary, while factor analysis is quite useful for 
assessing the reliability and validity of empirical measures, it is properly seen as a tool of 
theoretical analysis, not as a replacement for it. Used in this more modest role, factor 
analysis can aid in the development and assessment of empirical measurements. 
 
 
EDWARD G. CARMINES is Rudy Professor of Political Science at Indiana University, 
Bloomington. He received his Ph.D.from the State University of New York at Buffalo. 
His primary research interests are in American politics and methodology, and he has 
published articles in these areas in various journals, including the American Political 
Science Review, Journal of Politics, and American Journal of Political Science. He is the 
coauthor, with Richard A. Zeller, of Statistical Analysis of Social Data and Measurement 
in the Social Sciences: The Link Between Theory and Data, and, with James A. Stimson, 
of Issue Evolution. His current research focuses on the origins, evolution, and resolution 
of political issues in American politics.  
RICHARD A. ZELLER is currently Professor of Sociology at Bowling Green State 
University, Bowling Green. He received his Ph.D. in 1972 from the University of 
Wisconsin, Madison. His major professional interests are research methodology, 
statistics, and measurement reliability and validity. He has coauthored three books and 
published articles in Sociological Methods and Research, Journal of Social Psychology, 
International Encyclopedia of Education, Professional Psychology, and Teaching 
Sociology. Dr. Zeller serves as consultant to NSF, MINH, IDRC, and the Case Western 
Reserve University; and is International Consultant for the Augustine/Zeller Group where 
he has advised Fortune 500 companies on marketing policy. 
 


